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Abstract

Volumetric representations allow filtering of mesh-based complex 3D scenes to control both the efficiency and quality of ren-
dering. Unfortunately, directional variations in the visual appearance of a volume still hinder its adoption by the real-time
rendering community. To alleviate this problem, we propose two simple structures: (1) a virtual mesh to encode the directional
distribution of colors and normals, and (2) a low-resolution subgrid of opacities to encode directional visibility. We precompute
these structures from a mesh-based scene into a regular voxelization. During display, we use simple rendering methods on the
two structures to compute the image contribution of the appearance of a visible voxel, optimizing for efficiency and/or quality.
The improved visual results compared to previous work are a step forward to the integration of volumetric representations in
real-time rendering.

CCS Concepts
• Computing methodologies → Visibility; Volumetric models; Antialiasing;

Keywords: Volume rendering, voxel, octree, level of detail, SGGX

1. Introduction

Highly complex scenes are very common in the film industry, in-
volving multiple characters, environments with different textures
and materials, complex light transport effects, and many extended
light sources. The video game industry aims at achieving the same
level of quality, but faces extremely severe rendering limitations,
even with the power of today’s GPUs. Levels of detail (LODs) can
decrease scene complexity in order to render efficiently faraway
objects affecting only few pixels or even a fraction of a single pixel
(subpixel). Despite being broadly adopted by the video game indus-
try, LOD rendering must be handled with care in order to maintain
consistent appearance throughout scales over surfaces and groups
of objects. This very difficult task ends up requiring regularly some
form of manual intervention by artists [BAC∗18].

The common LOD approach in most video games uses mesh
simplification to reduce the number of triangles/quads. It assigns a
different mesh to each level of a discrete LOD [LLT∗20, YLH18,
DSSC08]. Hoppe’s Progressive Meshes [Hop96] encodes mesh
simplification as a series of edge-collapses, based on various met-
rics to infer minimal geometric distortion, and made even smoother
with geomorphing during an edge-collapse. Unfortunately, efficient
rendering requires to use fewer LODs from mesh simplification,
thus again, going back to rely on manual intervention. Moreover,
it proves mostly unsuitable for distributions of small objects, such
as trees’ fine branches and leaves, hair, and highly detailed objects
consisting of several potentially disconnected parts.

Volumetric representations, including 3D textures and sparse
voxel octrees, are also used for LODs. They integrate (filter) the
data within a volume to approximate its appearance when viewed
from a distance. They have been applied with success to dis-
tributions of more homogeneous small objects such as fur and
trees [KK89, Ney98]. Their hierarchical nature makes them suit-
able for extended MIP mapping filtering of their appearance [LN18,
HDCD15]. However, capturing appearance changes in presence of
arbitrary occlusions and complex objects, when moving around a
volume (i.e., directional distribution of colors and normals), is still
a challenge. Unlike MIP mapping that is widely used for surface
texture filtering, volumetric representations still fall short of adop-
tion by the real-time rendering community. We believe that this
problem requires much more attention, and this is our goal here.

In this paper, we present our solution to better encode the chang-
ing appearance of a volume (voxel) when viewed at a distance from
different directions. We introduce

• a simple virtual mesh to encode colors and normals in a voxel;
• a low-resolution subgrid to encode opacities in a voxel;
• an efficient display to sample the appearance and compute the

opacity of a voxel from a given viewpoint.

The virtual mesh is a simple triangular mesh (an octahedron) ap-
proximating an ellipsoid [Ney98,HDCD15]. While requiring more
space in memory, it allows for a much more detailed and flexi-
ble encoding to represent distributions of colors and normals at its

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://orcid.org/0000-0001-9580-982X
https://orcid.org/0000-0002-8167-6365
https://orcid.org/0000-0003-4685-3634


C. Brito & P. Poulin & V. Teichrieb / Voxel-based Representations for Improved Filtered Appearance

faces or vertices. That virtual mesh also frees us from the ellip-
soid symmetry. The shape remains simple enough to be sampled
efficiently from any view direction, thus providing a more accurate
appearance, with potentially smooth interpolations and sharp dis-
continuities. Opacities are refined in a low-resolution subgrid, also
providing an efficient approximation from any view direction. In
this paper, we concentrate our efforts and analysis on a single LOD
from a grid of voxels. However, we expect our results to extend
naturally to all LODs of a hierarchy of grids of voxels.

The rest of the paper is organized as follows. After a brief study
of voxelized volumetric representations for complex scenes in Sec-
tion 2, we introduce our volumetric representations in Section 3.
We describe how its structures are precomputed, and how they are
sampled for real-time rendering. We then discuss details of our im-
plementation in Section 4 before analyzing our results in Section 5.
Finally, we conclude by revisiting our achievements and we point
out future improvements in Section 6.

2. Related Work

We build our method from a long tradition of volumetric repre-
sentations to render filtered complex scenes, dating back to the
voxels of Kajiya and Kay [KK89], and generalized to octrees by
Neyret [Ney98]. Three problems must be addressed when dealing
with such volumetric representations: (1) filtering and encoding of
the volumetric data, (2) traversal of the volumetric elements, and
(3) sampling of the volumetric data for efficient rendering. Under-
standably, much work has been devoted to efficient rendering on
GPU and reducing data size.

To render high-quality massive volumes at interactive to real-
time frame rates, the GigaVoxels of Crassin et al. [CNLE09] are
based on sparse voxel octrees (SVOs). The hierarchical representa-
tion stores each tree node into a 3D texture on the GPU. It is linked
to a brick pool that contains the scene’s data. In addition to the ge-
ometry, it is able to render soft shadows and depth-of-field camera
effects, to handle LODs, and to exploit occlusion culling. It has its
limitations though. If multiple objects within a voxel occlude each
other differently depending on the view direction, the approximate
occlusion will not capture visibility changes. Also, the voxel occlu-
sion being approximated to the transparency of its enclosed object,
it may lead to thicker silhouettes. For instance, an opaque object
that occludes only half of a voxel will approximate it to a fully
occluding voxel.

To minimize the memory footprint with efficient ray casting,
Laine and Karras [LK11] propose Efficient Sparse Voxel Octrees
(ESVOs), in which voxel data are stored in conjunction with its
parent voxel, allowing data compression and lower memory con-
sumption. Instead of using a volume representation, ESVO uses a
surface representation for subvoxel content that limits the voxel ex-
tent with a pair of parallel planes that approximates the subvoxel
content. Ray traversal is done in depth-first order and an adaptive
blur filter is applied to smooth out blockiness in the final image. The
representation allows sampling in the order of millions of primary
rays per second, and it reduces artifacts near the scene’s silhouettes.

Christensen and Batali [CB04] propose a tiled 3D MIP map rep-
resentation for volume and surface data to make global illumination

more efficient and more adequate for movie productions. Data are
organized into an SVO with a brick at each octree node. It has ef-
ficient caching with a least-recently-used (LRU) replacement strat-
egy. The structure provides a hierarchical representation, and ray
differential is used to determine which level of the brick map should
be accessed.

Crassin et al. [CNS∗11] present an approach to render global il-
lumination at interactive frame rates. They represent the scene as
a prefiltered dynamic sparse voxel octree. First, incoming radiance
from all light sources is stored into the leaves of the SVO, and it is
filtered for the coarser levels of the octree. Light transport is then
approximated by cone tracing in the SVO structure, in a similar way
than GigaVoxels [CNLE09]. Voxel data are stored into six chan-
nels of directional values to capture anisotropic behaviors. To com-
pute indirect illumination, diffuse components are estimated with
larger cones, and specular components with narrower cones. The
approach renders dynamic scenes at interactive frame rates with
ambient occlusion. However, visibility is not accounted for in the
LODs.

To improve on previous representations [CNLE09, LK11] and
calculate subpixel occlusions and correlation effects, Heitz and
Neyret [HN12] propose a data representation stored in an SVO that
filters color variations, reduces aliasing, and works on depth-of-
field images. SVO traversal is similar to the method of Crassin et
al. [CNLE09], which accesses a certain level of the SVO depending
on the cone radius. Each voxel stores the object’s macroscopic dis-
tant field and its variance, the distribution of normals as a Gaussian
lobe with a variance, and a visibility. The representation can render
view-dependent effects of detailed geometry in real time. However,
it is not able to reproduce objects that behave like a volume at far
distances, such as grass, trees, and semi-transparent material.

Neyret [Ney98] proposes a representation to encode generic ob-
jects into a hierarchical volumetric model. Data are organized into
an octree that stores opacity and distribution of normals encoded
as an ellipsoid. Following this idea, Heitz et al. [HDCD15] in-
troduce the SGGX distribution, a representation to approximate
spatially-varying properties of anisotropic microflake-based partic-
ipating media. It is built on the microflake theory [JAM∗10]. A
microflake distribution is represented with the projected area of
an ellipsoid. The distribution of normals in a voxel has a com-
pact storage (six bytes per voxel) that allows linear interpolation,
analytical evaluation, and importance sampling. It can model sur-
faces and fiber-like materials by approximating volumetric specu-
lar and diffuse phase functions. The achieved results are visually
improved when compared to previous work, but density downsam-
pling and visibility factors are neglected, which may lead to incon-
sistent LODs in some cases. Unfortunately, the symmetry of the
ellipsoid may generate normals that are not part of the original dis-
tribution.

As linear downsampling may lead to brightening in the final im-
age due to the weakening of intrinsic shadowing structures, Zhao
et al. [ZWDR16] propose to optimize single-scattering albedos and
phase functions together, while maintaining good representation of
heterogeneous and anisotropic media based on SGGX. The solu-
tion achieves good downsampling results with much lower mem-
ory consumption, but it requires a long training stage for each ren-
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dered object, and voxel clustering may lead to artifacts on spatially-
varying datasets. Later, Loubet and Neyret [LN18] introduce a
new microflake model that characterizes and precomputes self-
shadowing, single and multiple scattering using closed-form ex-
pressions based on trigonometric lobes, and importance sampling.
However, dense voxels may lead to incorrect self-shadowing, and
colored multi-fiber datasets were not investigated in their work.

Complex 3D objects, such as trees, may contain both macro-
surfaces (meshes) and subresolution (volumes) at a given scale,
which implies that using only surface or volume LODs could lead
to inaccurate rendering results. Loubet and Neyret [LN17] propose
to mix both representations. An automatic macro-surface analysis
looks for large connected surfaces to separate the macro-surfaces
of the object. Each vertex from a macro-surface stores SGGX pa-
rameters that are prefiltered with edge-collapse [Hop96]. The volu-
metric part of an object is constructed by a voxelization method
that casts rays from each voxel center to gather the object data
(albedo and distribution of normals) and calculates a probability
of occlusion; this probability is used to estimate voxel density. Fi-
nally, the volumetric part of the object is rendered in a way similar
to Heitz et al. [HDCD15]. The solution generates good-quality im-
ages with low-memory consumption and fast mesh prefiltering, but
the macro-surface analysis fails on disconnected or rough surfaces.
Also, SGGX is limited to a single lobe, thus is unable to render
complex appearances.

To represent surface-like and volumetric appearances within a
single volumetric representation, Vicini et al. [VJK21] introduce
a parametric non-exponential transmittance model that is able to
transit between linear transmittance (opaque surfaces) and tradi-
tional exponential transmittance (volumetric scene). First, for each
non-empty voxel, rays are traced to determine local appearance pa-
rameters, and gradient descent is performed to optimize representa-
tion parameters (extinction coefficient and transmittance mode). To
capture the correlation effects across voxels and render surface-like
objects, rays that hit an object outside the voxel being optimized
are used to compute the transmittance model parameters. Unfortu-
nately, there is no guarantee that the hits outside the voxel are cor-
related to the objects within it, which may lead to an overestimated
transmittance.

Bako et al. [BSK22] propose a multi-scale LOD framework for
prefiltering scenes with complex geometry and materials. The data
are stored in an SVO and a novel transmittance function is devel-
oped. To build the representation, the phase function, albedo, and
coverage mask for each voxel at every LOD scale are precomputed,
and a single network is trained to compress the data into small la-
tent feature vectors that are unpacked by a lightweight decoder. The
representation is able to reproduce complex geometry and materi-
als, local occlusions, and specularities. However, their reported net-
work training takes approximately between half a day to two days
on a 256-GPU computer.

Aiming at voxel-based real-time global illumination, Cosin and
Patow [CP22] propose a clustering algorithm for voxels based on
similarity of normal directions, and an efficient data structure to
store the voxelization and clustering information. Their rendering
can produce single bounce diffuse indirect illumination in real time.
However, no treatment of voxel opacity is performed, and the dis-

tribution of normals within a voxel is approximated to a single nor-
mal, which may not adequately reproduce the voxel appearance of
complex scenes.

3. Our Approach

Our volumetric representations aim to better approximate volumet-
ric directional information in a voxel when viewed from a distance.
These directional information include distributions of normals, of
colors (also referred to as albedos), as well as opacities. Our repre-
sentations are suitable but not specially intended for voxels with ho-
mogeneous data. Such data can be easily approximated with a sin-
gle average, or with a smoothly changing value encoded with low-
order spherical harmonics. Our representations are more adapted
for voxels with complex content that needs filtering, and that varies
at times abruptly when observed from different directions. One
could interpret similar configurations as being more appropriate for
higher/coarser voxels in an octree-based representation of a com-
plex scene. While we can obviously also encode simpler content
in the lower voxels, the extra data required by our representations
may not be necessary at these lower levels. In fact with very fine
voxels, one color and one normal could be enough, and it has been
used successfully before. However, it is at a coarser, more aggre-
gate level that a simple color and normal will not work.

To achieve this improved appearance, we introduce a first repre-
sentation based on a virtual mesh to approximate voxel appearance.
An additional representation, a low-resolution subgrid of opacities,
is used to approximate the angular occlusion (or attenuation) due
to a voxel. Combined, they improve the appearance of the voxel’s
filtered content, being surface-like or volumetric, when the voxel
projection occupies a full pixel or a sub-pixel.

3.1. Overview

A virtual mesh encodes the appearance of a voxel from the distribu-
tion of normals and of colors sampled from the portion of the scene
contained in the volume of the voxel. It does not represent the shape
of objects, but normals and colors. The virtual mesh is constructed
from a set of points sampled within the voxel. Each point is visible
from “outside” the voxel from at least one direction.

At the precomputation stage, for each non-empty voxel, its vol-
umetric representation is built as follows: (1) Rays are randomly
traced, starting from outside the voxel; if an intersection occurs
within the voxel, its normal, color, and opacity are added to a
temporary list for that voxel. (2) A virtual mesh is afterward con-
structed in the shape of an ellipsoid (actually an octahedron with
triangular faces) fitted to the three eigenvectors from the gathered
normals; we use the vertices of the octahedron faces to encode the
distributions of normals and the faces for the colors. (3) The voxel
opacity subgrid is computed using the rays’ visibility/opacity from
Step (1) and accumulated along the ray’s traversed subgrid ele-
ments. An overview of the method is illustrated in Figure 1.

At rendering time for a given voxel, its virtual mesh is sampled
by tracing parallel rays from the direction of interest in order to gen-
erate visible normals and colors from that direction. They are used
to shade according to the voxel’s content. The subgrid of opaci-
ties are projected as spheres in the same direction to compute its
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input scene voxelization voxel sampling

subgrid of occlusionsvirtual mesh

volumetric 3D representations

+

Figure 1: Precomputations of our representations. First, the in-
put scene is voxelized. Each non-empty voxel (marked in yellow) is
sampled with random rays to gather information of normals, col-
ors, and opacities. Then, the data from the sampling stage are used
to generate a virtual mesh that approximates the distributions of
normals and of colors, and a 3× 3× 3 subgrid is generated that
encodes the voxel’s opacities.

combined approximative directional opacity. It determines how the
shaded voxel partly blocks farther voxels.

The following sections explain in more details all these steps.

3.2. Voxel Sampling

To build our volumetric representations, we sample data contained
in a voxel by randomly and uniformly tracing rays from outside
around the voxel in an unbiased way [SLH∗19]. First, a direc-
tion is computed by picking a random point P on the surface of
a unit sphere, properly weighted in a latitude-longitude mapping.
The voxel is projected in that direction and a point within this pro-
jected area is randomly selected, to which the ray is shifted. Fig-
ure 2 illustrates this method.

Each voxel has a list of triangles intersecting its volume.
From that list, the sampling ray may intersect the closest triangle
(a) within the voxel, (b) outside the voxel, or (c) miss all triangles.
For case (a), its intersection data (normal and color) are stored in
the virtual mesh, and an occlusion is added to the subgrid elements
that the ray traversed. If the closest ray intersection is on a back-
facing triangle, or for case (b), only an occlusion is added to the
traversed subgrid elements. For case (c), no occlusion occurs and
the ray is considered as visible, but the number of rays traversing
each subgrid element is updated. The accumulated opacity corre-
sponds to a ratio of the number of intersecting rays over the total
number of rays for each traversed subgrid element.

(a) (b) (c)

Figure 2: Unbiased ray sampling of a voxel in 2D. (a) A point P is
generated on the unit circle with direction d⃗ to its center. (b) The
voxel is projected (dashed blue line) along d⃗. (c) P is randomly
shifted within the projection of the voxel to P′, maintaining direc-
tion d⃗.

As a special pass after all opacities have been computed, we as-
sign a full visibility (i.e., erase the accumulated opacity) for each
subgrid element that contains no frontfacing intersection. In some
sense, this special pass is inspired by Vicini et al. [VJK21] with
their occlusion correlation that extends occlusion in a number of
occupied voxels. However, in our case, this extension remains “lo-
cal” to the current voxel.

The process is illustrated in Figure 3.

+1+1 +1

+1

+1

+1
+1

+0

+0

+1

+1

+0
+0+0

Figure 3: Tracing rays through a 2D voxel to gather normals and
colors. The opacity is accumulated in a 32 subgrid (33 in 3D)
along the traversed subgrid elements. In the end of the ray trac-
ing process, only subgrid elements with frontfacing intersections
will keep their accumulated opacities, as shown in cyan; the others
are marked with no opacity, i.e., full visibility.

3.3. Virtual Mesh

Our virtual mesh is defined as an ellipsoid approximated by an oc-
tahedron. It is built from the intersection data gathered from the ray
sampling step. It approximates directional distributions of visible
normals and of visible colors.

In order to create the virtual octahedron triangular mesh, we
leverage the ellipsoidal shape of the SGGX and its properties. We
estimate the SGGX distribution parameters from the sampled nor-
mals with the method from Heitz et al. [HDCD15]. Given an SGGX
distribution, a point on the unit sphere is mapped to the ellipsoidal
shape by applying scaling and rotation transformations. This com-
bined transformation is applied to the six canonical points on the
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unit sphere (±X , ±Y , ±Z) which then form the six transformed
vertices of the virtual octahedron mesh.

Each triangular face of the virtual octahedron mesh can store up
to three normals, one per vertex. A vertex being shared by four
triangles, it may hold up to four normals in total. We use these nor-
mals in the virtual mesh to approximate a “distribution” of normals,
thanks to a barycentric interpolation of its vertex data. First, each
normal from the list of sampled normals is assigned to one face
of the virtual mesh. To do so, we again leverage the eigenvectors
of the SGGX. The orthonormal eigenvectors of the SGGX shape,
which point to the vertices of the virtual mesh, divide the oriented
space into eight octants, that each contains one face of the virtual
mesh. For each sampled normal from the list, we determine the oc-
tant face the normal will be associated to. Note that a face may not
get any normal assigned to it.

Next, for each virtual mesh triangular face f that has a distri-
bution D of normals, we approximate its distribution by assigning
three extremal normals, one per vertex of that triangle. To deter-
mine three extremal normals, we build a cone from D that is aligned
with its averaged normal. The maximum angle θmax between the
averaged normal and the normals from D defines the opening an-
gle of the cone. The one normal at θmax is our first extremal nor-
mal. We then choose two normals on the cone, so that they enclose
as many as possible of the normals in D, but as little as possible
of orientations that have no normal in D. For a face that has only
one-to-three normals assigned to it, we use these normals as the
extremal normals and mark that face as a non-distribution approx-
imation, because no normals other than those have been observed
in the collected data.

The construction process is illustrated in Figure 4.

sampled distributions of
colors and normals in a voxel

virtual mesh from SGGX 
ellipsoid with normals at

vertices and colors at facessampled normals

SGGX ellipsoid fitted 
from sampled normals

cones of normals and
extremal normals

Figure 4: 2D illustration of the construction of our 3D virtual
mesh. Sampled normals in a voxel are used to define an SGGX
ellipsoid, whose shape is used to orient the virtual mesh. A cone
of normals is used to assign extremal normals to the corresponding
vertices per face of the virtual mesh. Corresponding colors are also
assigned to faces. A black face in the figure indicates that no color
(and normal) is assigned to its face.

When we need to extract normals from the distribution of a face,
we randomly sample points in the observed direction, i.e., from the
projected triangle face, and use a barycentric interpolation to com-
pute normals from these projected points. For non-distributions,

we simply pick the normal from the closest projected triangle face
(when there is a single normal for that face) or vertex (when there
are two-to-three normals).

We observed that in many geometric models, normals and colors
are often correlated. We decided to assign one color to each virtual
mesh face that corresponds to the average of the colors from the
original distribution of normals for that face. This is justified be-
cause colors in shading are combined more linearly than normals.

In special configurations, interpolating from three colors of a
face, like we do for normals, may prove more accurate. However,
overall, we could not find enough reliable situations where the ben-
efits outweigh the increased cost of memory of using eight colors
per virtual octahedron mesh instead of up to 24 colors.

Projected Area Sampling

In order to sample the virtual mesh from a given direction, we use
an approach based on ray-triangle intersection. Given a view direc-
tion w⃗ and a number of samples per face, we compute the perpen-
dicular projection of the virtual mesh faces that hold data (three
extremal normals and colors) into the view direction plane. We
compute the projected area of each frontfacing triangle, and sum
up the total projected area of all triangles. We generate a random
point Pi in the projected triangle with a warping method [SLH∗19]
and create a ray with origin Pi and direction w⃗. The ray-triangle
intersection provides the uv coordinates used for a barycentric in-
terpolation of the vertices’ extremal normals. The color is simply
the stored average color for the corresponding triangle.

If the number of samples is lower than the number of frontfacing
faces, one could use the projected areas of the faces to weigh the
ray origin, and then proceed as explained just above.

3.4. Opacity Subgrid

In the method of Vicini et al. [VJK21], rendering of surface-like
objects is improved by extending intersections for rays outside the
voxel itself in order to capture some form of correlation effects
across voxels. Unfortunately, that notion of correlation between
voxels is not as intuitive to adapt to any given scene, and it may
lead to over-estimation of occlusions.

To reduce such issues, we subdivide a voxel into a low-resolution
subgrid (subvoxels that we call instead subgrid elements) to capture
correlation effects across subgrid elements using only information
local to that voxel. A non-empty voxel is subdivided into 3×3×3
subgrid elements that had already stored the average opacity of
each subgrid element. To compute the opacities, the intersections
between the sampled rays (Section 3.2) and subgrid elements are
computed. If a ray traverses a subgrid element, the occlusion value
(1 for a hit and 0 for a miss) is added to the subgrid element’s
average opacity. At the end of the process, for each subgrid ele-
ment without any intersection point, we replace its value with a
null opacity, i.e., full visibility.

Directional Opacity

When rendering, to compute the occlusion due to a voxel in a view
direction, the voxel is projected on a temporary view plane along
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that same view direction. We define a square window that bounds
the parallel projection of the voxel. This window is subdivided into
4× 4 pixels. A subgrid element (of the voxel) may contribute to
the opacity of a number of these pixels. Each subgrid element is
replaced by an enclosing sphere that is efficiently projected as a
circle in the window. For each covered pixel, we compute analyt-
ically the overlapping area As of the subgrid-element circle and a
circle enclosed by the pixel. The opacity of the subgrid element αs
is multiplied by the coverage As of the pixel to give an approxima-
tion of its contribution to the opacity of the pixel. We keep only
the largest such contribution for each pixel. The final directional
opacity of the entire voxel corresponds to the average of the final
subgrid elements contributions for all 4×4 pixels.

The process is illustrated in Figure 5.

3x3x3 subgrid
of voxel opacities

3x3x3 subgrid
of enclosing spheres
from voxel opacities

enclosing spheres
projected on 4x4 pixels
to compute disk-to-disk

coverage visibility

Figure 5: The 3 × 3 × 3 subgrid of opacities are converted into
enclosing spheres. These spheres are projected on a 4× 4 grid of
pixels. The ratios of coverages of the disk-to-disk are computed to
determine the directional opacity for a voxel in the view direction.

4. Implementation

The source code of our implementation and related material are
available from the cjsb.github.io/hpg2023/ website.

For precomputations, we implemented a CPU-based ray tracer of
triangular meshes, with textures, and an octree acceleration struc-
ture. It is used to compute our volumetric representations. To col-
lect data in a voxel, we cast 150 rays around the voxel.

For real-time display, we implemented a GPU-based ray tracer
of voxels developed with CUDA, with an octree acceleration struc-
ture. It handles primary and shadow rays. In a precomputation, we
cast a shadow ray from a light source toward the center of a voxel.
The ray traverses the scene’s voxels between the light and the voxel
to shadow, and the opacity is computed as detailed in Section 3.4.
Similarly to Vicini et al. [VJK21], we avoid adding the contribution
of the voxel itself to the shadow occlusion. We also avoid intersec-
tions of voxels that are closer than 1.5× the size of a voxel. Their
extension prevents to lose too much light during shadow compu-
tations, which would make the image darker in shadowed regions.
This can be seen in Figure 6.

(a) No distance (b) With distance (c) Reference

Figure 6: Impact of the minimal distance (1.5× size of a voxel) to
shadow ray intersection from Vicini et al. [VJK21], which is inte-
grated in our method.

On the GPU, the virtual mesh is composed by three eigenvectors
(char3) and three scaling factors (uchar). The three normals (char3)
of each face are stored along with one color (uchar3) per face. A
boolean per triangle stores if its face encodes a distribution or a
fixed set (1-to-3) of normals. One opacity value (uchar) is stored
per subgrid element, thus, 27 opacities. Our representations require
approximately 143 bytes of memory per voxel; the storage per test
scene can be found in Table 2.

As a ray intersects a voxel, the virtual mesh is sampled to get
normals and colors given the ray direction. We generate as many as
40 samples per visible face, but only samples visible to the camera
are used in shading. The average shading is applied as the voxel
color and the opacity is computed as discussed in Section 3.4.

We render a scene by tracing four rays per pixel through the vox-
els, from a set of precomputed jittered patterns. A ray traverses the
voxels until it reaches an accumulated opacity threshold of 0.001.
When a voxel is traversed by a ray, we compute its shading and its
opacity for the direction from the center of the voxel to the camera
position. Both values are cached and reused if another ray intersects
that voxel. Cached values are cleared if the camera-scene configu-
rations change.

5. Results

We compare our results with those of two different representations
per voxel: (1) a naïve approach that stores one average for the nor-
mals, the colors, and the ray occlusions, and (2) the representation
from Vicini et al. [VJK21] that uses a non-exponential transmit-
tance model for opacity and SGGX [HDCD15] to encode the dis-
tribution of normals. However, we use samples coming only from
triangles intersecting a given voxel. This is different from the orig-
inal work from Vicini et al. [VJK21] that extends rays to intersect
triangles up to a certain distance away from that voxel. Figure 11
at the last page and a video sequence as supplemental material pro-
vide some general visual comparisons with ground truth.

Our representations are able to approximate both surface-like
and volumetric appearances as illustrated in Figure 11, Island, third
column. The island as a whole and the palm tree trunks are treated
as large occluders, since they entirely block visibility; the leaves
(fronds) are treated as a volumetric distribution of small objects.
The finest resolution of 2563 voxels is able to approximate the fine
mesh-based scene with occlusions, shading, and colors, as well as
the shadows from the light above to the right. The resolution is
not fine enough though, and slightly extends the size of features.
Because we are using a conservative maximum occlusion for com-
bined opacities, cast shadows also appear slightly larger.
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Res. Method Bunny Trees Island City Bistro
MSE SSIM MSE SSIM MSE SSIM MSE SSIM MSE SSIM

Averages 0.0201 0.8581 0.0180 0.7888 0.0051 0.9071 0.0113 0.7613 0.0107 0.8044
1283 [VJK21] 0.0053 0.8383 0.0079 0.8786 0.0038 0.9162 0.0059 0.8180 0.0096 0.7977

Ours 0.0043 0.9133 0.0104 0.8221 0.0035 0.9294 0.0045 0.8548 0.0049 0.8731
Averages 0.0205 0.8690 0.0205 0.7675 0.0065 0.8825 0.0087 0.8298 0.0115 0.7999

2563 [VJK21] 0.0050 0.8342 0.0100 0.8439 0.0039 0.8937 0.0050 0.8573 0.0067 0.8243
Ours 0.0029 0.9236 0.0093 0.8250 0.0040 0.9113 0.0036 0.8851 0.0039 0.8702

Table 1: Error metrics (MSE and SSIM) with a reference image at voxelized resolutions of 1283 and 2563. Best values (lowest for MSE and
highest for SSIM) are in bold. Figure 8 shows the distribution of errors for two scenes, where some uniform background has been cropped.

Averages [VJK21] Ours Reference

Figure 7: The Bunny scene at two voxelized resolutions (top: 1283

and bottom: 2563) and rendered at the equivalent image resolu-
tions (top: 1282 and bottom: 2562). The first column uses the aver-
age color, normal, and opacity per voxel. The second column uses
the method from Vicini et al. [VJK21]. The third column uses our
method. The fourth column is a direct ray casting (1024 rays per
pixel) of the scene’s mesh.

Figure 7 and Figure 11 at the last page show comparison details
for three volumetric methods on four scenes voxelized at two reso-
lutions and displayed at the equivalent image resolutions (empty
space at top/bottom was cropped to better fit in the table). The
method using averages (color, normal, opacity) suffers from too
much transparency and faded colors and shading. The method of
Vicini et al. [VJK21] improves on the opacity and shading, but also
suffers at some locations from the same problems. Figure 9 zooms
in two portions of the Island scene. The two methods, Averages
and Vicini et al. [VJK21], are unable to properly handle different
occlusions, illustrated by the blue from the sea leaking through the
large occluder formed by the island (red inset), and the continuity
of the palm tree trunks against the white background (blue inset).
To be fair with the method of Vicini et al. [VJK21], extending the
opacity test outside a voxel does help in some situations, but one
needs to be careful to set the distance properly for a given scene.
Our method improves on the colors, normals, and opacities, even
though it has a tendency of extending opacities due to the maxi-
mum opacity test, which shows up as larger or denser voxels and
shadows.

To quantitatively compare the different representations, we com-
puted the Mean Squared Error (MSE) and the Structural Similarity
Index (SSIM) [WBSS04]against a ground-truth image computed

25
63

12
83

[VJK21] Ours Reference

Figure 8: Distribution of MSE errors in two scenes.

as a ray-traced version of the polygonal scenes, with 1024 rays
per pixel, averaged with a simple box filter. As shown in Table 1,
our representations have a better score in both metrics in most of
the cases. However, in the Trees scene, since we use a conser-
vative maximum occlusion that makes the small occluders larger,
Vicini et al. [VJK21] was able to better reproduce the appearance
of the trees. Rendering at a higher resolution reduced this differ-
ence. Also, the method of Vicini et al. [VJK21] gets a better MSE
score for the Island scene with a 2563 resolution, but with a mi-
nor difference compared to ours, while our method gets a better
SSIM score. Figure 8 shows the distribution of MSE errors in two
typical images. In the top row, our method is slightly better (MSE
= 0.0093 vs ours = 0.0100), but we observe how worse errors are
distributed along contours. In the bottow row, our method is better
overall (MSE = 0.0045 vs ours = 0.0059).

A finer resolution of voxels reduces thicker silhouettes, but
at an increase (about 8× for an octree subdivision) of memory
and computations. As an experiment, we rendered with Vicini et
al. [VJK21] the Island scene at 2563 in a 256× 256 image, and
then averaged 2×2 pixels into one pixel. When comparing the re-
sulting 128×128 image with the ground truth, their MSE = 0.0038
remained the same (ours at 1283 is at 0.0035, cf. Table 1), but their
SSIM = 0.9085 got worse (ours at 0.9294). This illustrates that us-
ing a previous method at a finer scale does not necessarily improves
results. Our method remained superior in this example.

Our representations can reproduce diffuse and specular shadings,
as shown in Figure 10 (top). Since we encode the distribution of
normals using only three extremal normals, specularity may lose
some of its sharpness when the distribution of normals is spread

© 2023 The Authors.
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(a) Averages (b) [VJK21] (c) Ours (d) Reference

Figure 9: Comparison of different parts of the Island for a voxelization of 2563. Both methods of Averages and Vicini et al. [VJK21] are
unable to fully represent different occlusions, as they show leakage from the voxels containing the island (red inset) and in the palm tree
trunks (blue inset). Our method can better reproduce both of these occlusions, as it reduces such leakage. It also shows more details, for
instance, palm tree trunks in front of the island can be distinguished more clearly (red inset).

out a little more by the cone of normals. However, compared to
previous work, while it is known that SGGX is able to reproduce
well both diffuse and specular shadings, the opacity computation
suffers from a stronger leakage, which contributes to reduce much
the appearance of the shading.

(a) [VJK21] (b) Ours (c) Reference

Figure 10: Comparison of diffuse and specular shading results for
a voxelization at 1283 and rendering at 1282. Top: With a light in
front of the Bunny, frontfacing normals are properly handled, but
leaking of opacities by Vicini et al. [VJK21] reduces their contri-
butions. Note: A red background has been added to better differ-
entiate transparency vs. specularity. Bottom: With a light behind
the Bunny, combined SGGX symmetry and opacity leaking result in
improper shading from backfacing normals lit by the light source.

In cases where the visible normals of the distribution of normals
are not visible from the light source, our representations are able
to better reproduce the shading of the object with much less light
leakage, as shown in Figure 10 (bottom) where the light source is
located behind the Bunny. It is noteworthy that the SGGX symme-
try is forced to generate normals also in the opposite direction than
the sampled normals. These shaded normals, in addition to weaker
opacity, result in such shading appearing in Figure 10(a) (bottom).

In terms of performance, precomputations (software implemen-
tation, single thread, no parallelism) for our larger scenes take on
average 22.6 sec. at 1283, and 101.6 sec. at 2563, on an Intel i7-

Memory Precomput. Rendering
Scene Tris 1283 2563 1283 2563 1283 2563

Bunny 144k 10.6 52.4 15 66 53 27
Trees 540k 18.7 106.2 33 150 48 19
Island 307k 4.7 22.4 8 34 76 40
Bistro 3420k 19.9 135.5 29 156 46 18
City 635k 8.9 48.0 28 102 72 30

Table 2: Number of triangles, memory (MB), precomputation time
(seconds), and rendering perfomance (fps) with four rays per pixel
for our representations per test scene.

8700K with 32 GB of memory. A frame on the same machine with
an NVIDIA RTX2080, with shading and shadows from one light
source, is rendered on average at 59 fps at 1283, and 27 fps at
2563. The shadows are precomputed and caching is used in order
to achieve more interactive frame rates. More detailed statistics for
precomputations and rendering can be found in Table 2.

Our representations are about 13× larger than Vicini et
al. [VJK21], which requires 11 bytes (6 bytes for the SGGX dis-
tribution of normals, 2 bytes for their occlusion model, and 3 bytes
for the color average). Our representations are about 20× larger
than the method of Averages, which requires 7 bytes (3 bytes for
the color, 3 bytes for the normal, and 1 byte for opacity). As an ex-
ample, the City scene at resolution 1283 requires 8.9 MB with our
representations, and 0.6 MB for Vicini et al. [VJK21], and 0.4 MB
for Averages. The same scene is rendered at 72 fps with our rep-
resentations and 96 fps with Vicini et al. [VJK21] and Averages.
However, image quality is not the same for all of the cases as our
representations can better reproduce the different appearances as
illustrated throughout this paper.

6. Conclusions

Volumetric representations offer many benefits to render efficiently
complex scenes, simulate light transports, and filter appearances.
They are also very well suited to hierarchical computations. This
makes them a great solution for highly constrained real-time ren-
dering in video games. Major contributions have demonstrated their
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potential for real-time display (e.g., [CNLE09,HDCD15]) and their
suitability for light transports (e.g., [CNLE09, CNS∗11, CP22]).
However, in order to gain popularity, key limitations must be over-
come, a major one being their visual quality.

In this paper, we studied occlusion and distributions of colors
and normals as they vary under changing view directions. We in-
troduced a virtual mesh and an opacity subgrid to capture variations
of appearance of a volume. They build on the idea of fast render-
ing steps of simple structures to approximate directional changes.
While the two structures increase memory requirements and com-
putations, they allow for better and more flexible approximations
that are key for improving visual quality of volumetric representa-
tions. We showed that for moderately complex scenes, our render-
ing prototype offers a reasonable compromise that is a step toward
better approximations.

Our voxel-based data have been designed to be suitable for hier-
archical treatment. However, at this moment, precomputations are
performed on the entire polygonal scene for each resolution of vox-
els, i.e., for each level of an octree. In a near future, we will in-
vestigate solutions to merge distributions of normals, colors, and
opacities directly from the structures at a finer resolution, rather
than precomputing them from the polygonal scene itself. A form of
interpolations between voxel data at adjacent LODs would help to
generalize the structures for MIPmapping rendering strategies.

Because our structures are general, we should also be able to
integrate them in light transport simulations in order to provide
a more complete volumetric real-time rendering system, as well
as for high-quality offline rendering. In particular, the many-light
methods could adapt well in the context of global illumination for
volumetric rendering.

Finally, a much more challenging scenario involves animated
scenes. While we could always differentiate between static and
dynamic scene elements, their impact on precomputations still re-
mains dominant in volumetric representations.
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Figure 11: Four test scenes at two voxelized resolutions (1283 and 2563) and rendered at the equivalent image resolutions (1282 and 2562).
Note that empty spaces at the bottom and top of some images have been cropped to better fit in the table. The first column uses the average
color, normal, and opacity per voxel. The second column uses the method of Vicini et al. [VJK21]. The third column uses our method. The
fourth column is a direct ray casting (1024 rays per pixel,box filtering) of the scene’s mesh.
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