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ABSTRACT

Fluid simulation using meshless methods has increasingly become a
robust way to solve mechanics problems that require dealing with
large deformations, and has become very popular in many applica-
tions such as naval engineering, mechanical engineering, movies
and games. One of the main methods is the Smoothed Particle
Hydrodynamics (SPH). This work has two main goals: to propose
a multiphase SPH formulation by extending the work of Silva et
al. [22] and to propose a shader based render solution for this kind
of simulation. The proposed SPH method was able to simulate mul-
tiphase fluids with up to one million particles and the renderer was
able to generate visually plausible results up to 60fps.

Keywords: SPH, Multiphase, Rendering, Screen Space

Index Terms: I.3.7 [Computing Methodologies]: Computer
Graphics—Three-dimensional Graphics and Realism, Virtual Real-
ity; I.6.8 [Computing Methodologies]: Simulation and Modeling—
Types of Simulation, Animation.

1 INTRODUCTION

Some of the fluid dynamics problems in naval engineering and
mechanical engineering are intended to be simulated with high
numerical accuracy. The classic method for this type of simulation is
the Finite Element Method (FEM), which can deal effectively with
the vast majority of simulation problems, but becomes inefficient
in cases where there are large deformations and with boundary
regions [40].

To overcome such challenges, meshfree methods may be used
such as the Smoothed Particle Hydrodynamics (SPH) [26] and Mov-
ing Particles Semi-implicit (MPS) methods [35]. These techniques
can simulate fluids efficiently using a system with a discrete number
of particles and solving the Navier-Stokes equation of motion with-
out the need to use a grid, making the method with a high degree
of flexibility in cases where the traditional methods become very
complex [55].

The SPH method was designed over three decades ago by Lucy
[42] and Gingold and Monaghan [26] and focused astrophysics ap-
plications. Since its conception, there have been continuous improve-
ments and adaptations of the original method to simulate various
kinds of physical phenomena. Due to its flexibility and robust-
ness, the method is able to simulate fluid flow [48], spray [32], air
bubbles [3], cloth-fluid coupling [74] and many other fluid behav-
iors [33].
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Vieira-e-Silva et al. [22] proposed a weakly compressible SPH
method that relies only on the XSPH formulation to simulate viscos-
ity and prevent particle penetration problem (boundary condition).
This approach led to a small SPH formulation with a relatively high
numerical precision, which can be used for interactive applications
due to its small number of calculations.

According to Violeau and Rogers [66], a major challenge for
particle methods is the modeling of the interaction between solids
and fluids (boundary condition). Several solutions have been pre-
sented, which may lead to a high degree of numerical precision
or only the visual accuracy [40]. Another challenge in the field is
how to simulate multiphase flow. The SPH method has been used
for multiphase flows with approaches that have major changes in
the standard SPH formulation [66], which can be quite difficult to
implement, or with an adaptive boundary condition, which is very
time-consuming. So, these methods may not be the best options for
online applications. Looking for better performance, Solenthaler
and Pajarola [59] present a multiphase SPH formulation which does
not affect the performance negatively and is easy to implement due
to its simple modifications on the standard SPH method.

Given the high flexibility of implementation of this type of
method, it has been used in the gaming industry [65], in the film
industry [29] and the method has become one of the most popular
particle-based methods in the animation industry [70].

In those industries, another big challenge is to render the sim-
ulated fluid realistically. To visualize the simulation results it is
necessary to rebuild the surface using particles identified as free
surface [72]. The rendering of the results can be made using several
methods such as direct rendering [73], 3D scalar field [72], volume
rendering [24] or a screen space approach [65].

Recently, the literature indicates two main methodologies: the
use of a 3D scalar field and the screen space approach. In the first
one, each particle of the system is associated with a scalar value,
and the surface of the fluid is reconstructed using those values,
for instance, using a Marching Cubes algorithm [41]. The second
approach renders the particles as spheres or point sprites and applies
a smoothing filter to the depth map to create a better final looking
surface render.

The 3D scalar field approach presents the challenge of choosing
the most appropriate kernel function to determine the density of
scalar field of the surface particles. To create a smooth surface, the
function is calculated using neighboring particles, which tends to be
quite costly, making the rendering method more suitable for offline
applications [72].

The screen space option may be more suitable for real-time appli-
cations because each particle renders individually, without the need
to apply a function on the neighboring particles. Once reconstructed,
the surface may have a resemblance to jam. To overcome this char-
acteristic, a smoothing function is applied to the depth map of the
scene, which is used to calculate the normal at each point. Finding
the best function to create a smooth surface is the main challenge of
this type of technique [54]. However, those methods only render a
single fluid on their graphical pipeline.



In the search of a multiphase SPH formulation that may be used
in interactive applications and a rendering solution which can handle
multiphase fluid flows with the balance between performance and vi-
sual quality, this work has as main purpose: to propose a multiphase
SPH formulation by extending the work of Vieira-e-Silva et al. [22]
and validate if the XSPH can be integrated with a multiphase solu-
tion. Also, to propose a graphical pipeline for real-time multiphase
particle-based simulation based on the work of [65].

So, the main contributions of this work are:

1. An overview of SPH simulation and rendering for particle-
based simulation.

2. A simple multiphase SPH model which depends only on the
XSPH to handle viscosity and boundary conditions.

3. The SPH implementation can handle up to millions of particles.

4. A rendering solution that can be used in real-time applications
with good visual quality.

5. A shader based render that can be integrated into many particle-
based fluid simulations.

In the next section, the state of art of SPH simulation and particle-
based fluid rendering is presented along with the related work of
multiphase flows. Then, both simulation and rendering methods
are explained to deal with multiphase simulation. In section 4 the
test cases to validate the approaches proposed are presented, and
then the visual and performance results are presented in section 5.
Finally, in section 6, the conclusions are discussed together with
future possibilities and enhancements.

2 STATE OF ART

The SPH method was introduced by Lucy [42], Gingold and Mon-
aghan [26] to model astrophysical phenomena. Since then it has been
vastly extended to model fluids [6,13] and even solids behavior [14],
mainly under those aspects which could limit the applications sim-
ulated by mesh-based approaches, such as large deformations, for
instance.

A straightforward adaptation of the original SPH method is the
application of weakly compressible fluids. In this kind of fluid, the
pressure can be calculated by an equation of state. The works [38,
39, 57, 62] show comparisons between implementations of weakly
compressible and truly incompressible methods, in which are applied
techniques such as the one introduced by Commins and Rudman
[21].

In the truly incompressible methods, the pressure is calculated by
the Poisson equation. This equation can be represented by a sparse
linear system. Those kind of methods can generate a more accurate
solution but require more computation time as stated in the works
of [7, 12, 25, 69].

The main difference between the original (astrophysical) SPH
method and the newer particle-based fluid simulations is the inclu-
sion of boundary conditions. There are several ways of containing
the fluid inside of a bounded geometry, such as, explicit forces [40],
pressure influence [69], density compensation [5] or a geometrical
approach [46].

To create fluid with distinct behavior some characteristics can
be adapted depending on the problem being simulated, such as
viscosity, turbulence, smoothing function, among others. The works
of [38, 53, 58, 71] show some existing options concerning viscosity
improvements.

In order to explain the effects of the smoothing function on mesh-
less simulations, the works of [8,10,11,40,58,61] discuss the changes
in behavior when varying the smoothing functions, evaluating the
accuracy and stability of the methods.

Given the meshless characteristics of the simulation, it is possible
to create a parallel solution, using cluster technology or general
purpose programming for graphics processors (GPGPU) techniques,
in order to decrease the time consumption, as shown in the works
of [19, 27, 28, 37, 76].

In the VR community, SPH simulation has been used in many ap-
plications. Cirio et al. [16] proposed a six Degrees of Freedom (DoF)
haptic interaction with fluid simulated using a weakly compressible
SPH, providing a force-based feedback and being able to achieve
real-time performance (90 fps) for 32,768 particles. This work was
extended to deal with melting and freezing phenomena [18] and to
interact with deformable and rigid bodies [17].

Another example in the VR community is the work of Pan et
al. [50], which used a PhysX built-in SPH-based fluid solver to
simulate bleeding effects in a virtual reality-based surgical simulator,
being able to achieve a performance of 49 fps with 5,000 particles.
Also, Wang and Wang [67] proposed a haptic interaction with fluid
using SPH and finite elements method and used to operate a canoe
with two paddles rowing in the fluid.

In the SPH literature, many methods have been presented to re-
construct the surface given a set of particles. A possible approach is
to use a 3D scalar field; the liquid surface is defined by calculating
a kernel function which will define a scalar density field. Then, a
Marching Cubes algorithm [41] is used to generate a triangular mesh
of the isosurface of this 3D field. The choice of the scalar field for-
mulation is the key for creating a high-quality surface; the simplest
choice is to use a blobbies approach, also known as metaballs [9],
but this method can create surface dumps, depending on the particle
distribution.

Smoother surfaces can be found using a scalar field based on the
weighted average of particles close to each other and calculated by
an isotropic kernel [1,2,49], which can generate a better visual result
in sharp features and edges [72].

A second approach to render the fluid surface is to use an explicit
method, frequently applied in an Eulerian context [23]. In the SPH
literature, a few works can be found using this approach, such as [52],
which changes the surface position using information of the particle
simulation. Those methods have a high memory consumption and,
to avoid this problem, methods such as point splatting [44], and a
ray-isosurface intersection with metaballs can be used [75].

Another solution is to render the fluid particles using screen space,
which are more suitable methods for real-time applications. Those
methods interpret each particle as a sphere to reconstruct the surface
from the depth map, the surface is smoothed, and the thickness of
the fluid is used to attenuate the fluid color. Many algorithms can
be used to smooth the depth map: a binomial filter [47], a Gaussian
filter [65], a curvature flow [4, 65], and a post-smoothing filter [54].

To create a more realistic fluid rendering, the screen space ap-
proaches have been used together with ray tracing to simulate reflec-
tion and refraction [68, 77].

Multiple approaches have been used to render multiphase fluids.
[59] uses a ray tracing algorithm [60] to render the fluid, taking
20s to 40min to render a single frame. [70] renders the fluid using
mental ray, which takes 1 second to 1.5 minutes depending on
the complexity of the presented scene and [68] renders fluids with
different colors by mixing ray tracing with particle splatting, being
able to render 800k particles with approximately 23 fps in a 1920
1920 resolution.

2.1 Related Work

The multiphase flow was firstly introduced by Monaghan [43], which
provided a general and easily extended SPH method to handle multi-
phase air simulation. Muller at al. [48] was able to simulate multiple
fluids with small density ratios by changing the mass and the rest
density. Hu and Adams [30] present a constant-density approach,
which corrects the intermediate density errors by adjusting the half-



time-step velocity with exact projection, allowing to simulate in-
compressible flows with high-density ratios by the projection SPH
method. Recently, Yang et al. [70] extended the SPH method to
cover solid phases, including deformable bodies and granular ma-
terials using the concept of volume fraction and established a new
way of modeling fluid-solid interaction.

Many works benefited from the introduction of multiphase fluid
flow in SPH. One example is the work of Tartakovsky and Meakin
[63], where it simulates miscible and immiscible fluid flow. In this
work, the authors use a new SPH model for immiscible flow that
combines number density based SPH flow equations and interparticle
interactions. They also present applications of the miscible flow
model to the simulation of pore-scale flow and transport [64].

Another example is the work of Hu and Adams [31], where a mul-
tiphase SPH for macroscopic and mesoscopic flow was developed.
It handles naturally density discontinuities across phase interfaces.
There are also newly formulated viscous terms that allow for a dis-
continuous viscosity and ensure continuity of velocity and shear
stress across the phase interface. The authors also introduced ther-
mal fluctuations in a straightforward way based on this formulation
and developed a new algorithm capable of dealing with three or more
immiscible phases. Lastly, mesoscopic interface slippage is included
based on the apparent slip assumption which ensures continuity at
the phase interface. For validation purposes, numerical examples
of capillary waves, three-phase interactions, drop deformation in a
shear flow, and mesoscopic channel flows are considered.

As most of the work found in the literature are done using 2D
simulation, there are not many works on rendering multiphase fluid
[15, 51]. But, when it is necessary, most works use a ray tracing as
in [59, 70]. This approach results in a high-quality level but in both
works the rendering is done offline or with a performance of 1 fps.

3 SIMULATION AND RENDERING METHODS

In this section, the SPH method, based on the work of Vieira-e-Silva
et al. [22], and its modifications to support multiphase fluids, are
explained. Then, the multiphase rendering solution that extends the
work of Laan [65] is explained.

3.1 SPH Formulation
The Smoothed Particle Hydrodynamics (SPH) is a Lagrangian
method created originally to simulate astrophysics problems and
lately has been used mainly to simulate hydrodynamics problems
solving the Navier-Stokes equation, defined by Eq. (1). This ap-
proach can be described in two parts: the kernel approximation and
the problem discretization.

du
dt

=− 1
ρ

∇P+
1
ρ

∇ · τττ +Fext (1)

The Navier-Stokes equation describes the fluid movement regard-
ing three main components: pressure, viscosity and external forces.
The SPH solves the fluid movement by considering the fluid as a
weakly compressible system, which is based on the fact that every
incompressible fluid is a little compressible, and because of that,
the method simulates a quasi-incompressible equation to model the
simulation.

Vieira-e-Silva et al. [22] proposed a SPH formulation into a series
of steps.

The first step is to calculate the particle density, which is calcu-
lated using the continuity equation as in Eq. (2).

dρi

dt
= ∑

j
m j(ui−u j)∇Wi j (2)

After calculating the density of the particles in the system, the
next step is to solve their pressures, which are calculated by the
Tait‘s equation (3), as shown in Vieira-e-Silva et al. [22]:

Pi = B((
ρi

ρ0
)γ −1) (3)

where kp and B are the pressure constants, ρ0 is the rest density of
the fluid and γ is a constant that usually has a value of 7.

The pressure force is commonly calculated using Eq. (4). This
approach ensures a modular equality between two particles and
conserves linear and angular momentum, leading to a more stable
simulation, as shown in the work of Monaghan [45]:

1
ρi

∇Pi = ∑
j

m j(
Pi

ρ2
i
+

Pj

ρ2
j
)∇Wi j (4)

To simulate the viscosity and to prevent a particle penetration
problem, the XSPH method is used. This method forces particles
near each other to move with almost the same velocity. The method
is computationally cheaper than other methods and has only one
tunable parameter making it easy to change [56]. This parameter
controls the viscosity influence on the fluid; the higher the parameter
value, the greater the influence of the viscosity of the fluid.

To conserve linear and angular momentum, Eq. (5) was used
to calculate an intermediate velocity v∗ and Eq. (6) was used to
calculate the new velocity.

v∗i = vi +ai4t (5)

vi = v∗i + ε ∑
j

mb
v∗i − v∗j

ρ j
wi j (6)

where ai is the particles acceleration and ε is the tunable parameter
of the XSPH method.

Finally, the final term in the Navier-Stokes governing equation is
related to the external forces in the system which in most systems is
the gravity. The particle new velocities and positions are calculated
using a simple first order Euler time integration by Eq. (7) and Eq.
(8), respectively, as suggested by Schechter and Bridson [56]:

ut+1
i = ut

i +at
i4 t (7)

xt+1
i = xt

i +ut+1
i 4 t (8)

where ai is the particle i acceleration and4t is the time step of the
simulation.

The SPH method flow can be found in Fig. 1

3.1.1 Handling Multiphase Simulation

To handle multiphase simulation, Solenthaler and Pajarola [59] pro-
posed to calculate the density of a particle by treating its neighbors
as if they would have the same rest density and mass as itself. So, to
extend the SPH technique explained before, the density should be
calculated as Eq. (9).

dρi

dt
= ∑

j
mi(ui−u j)∇Wi j (9)

In the method proposed by Vieira-e-Silva et al. [22], the XSPH
contribution is calculated for every neighbor of a fluid particle. But,
to create a more realistic behavior, only the fluid particle contribution
is used to handle multiphase flows.



Figure 1: SPH simulation flow.

3.2 Multiphase Rendering Solution
The proposed rendering is a shader solution based on the work
of Laan, Green and Sainz [65], which uses the particles position
input to the rendering pipeline. The method can be described as
a series of steps: for each fluid, the surface depth and thickness
are calculated into different maps, and the depth map is smoothed.
Then, combining the depth map with the thickness map, each fluid
is rendered separately and, finally, both fluids are rendered together
and combined with the surrounding scene.

The illustration of the rendering method can found in Fig. 2.

Figure 2: Render solution chart.

3.2.1 Surface Reconstruction
To reconstruct the surface of the fluid, each particle is rendered as
a sphere using a point sprite (screen oriented quads) with depth
replacement in the fragment shader, which means that the depth test
is enabled on OpenGL. The point sprite size is calculated inversely
proportional to the viewer’s distance to the fluid surface, in other

words, the sprites size increases as the camera approaches the fluid.
The normals are calculated from the depth values, and so, will also
be affected by the smoothing step.

3.2.2 Surface Thickness Calculation
To give a more reliable impression on the fluid, it is expressed
by Beers law that a fluid becomes less visible depending on the
amount of fluid in front of the observer, which will be referred as
thickness [65].

This calculation is quite similar to the depth map creation, but
instead of the depth value, the fragment shader keeps the thickness
of the particle. The depth test is enabled, but additive blending is
used to accumulate the value of the thickness on a certain pixel.

3.2.3 Surface Smoothing Method
After rendered the particles as spheres, the surface will resemble a
jam. So, to avoid this behavior, the depth map is smoothed using a
Bilateral Filter, which provides a good visual quality preserving the
silhouette edges and presenting a better performance if compared
with other methods [65].

The Bilateral Filter is divided into two passes, a horizontal and a
vertical one. Each pass applies a spatial kernel, and the weight of
a pixel inside the kernel also depends on a function in the intensity
domain which decreases the weight of pixels with large intensity
differences.

3.2.4 Final Shading
To create the final result, first, each fluid is rendered individually
compositing the intermediate results explained before. In this step,
only Phong specular highlight and a Fresnel based reflection are
considered, which can be calculated as Eq. (10).

C f luid = a(1−F(nnn · vvv))+bF(nnn · vvv)+ ks(nnn ·hhh)α (10)

where F is the Fresnel function, a is the refracted fluid color, b is
the reflected scene color, ks and α are specular constants, nnn is the
surface normal, hhh is the half-angle between camera and the light and
vvv is the camera vector.

The view-space normal of a certain point is determined by the
finite differences of the depth map. This approach may result in
artifacts close to the fluid silhouettes, so, in that case, the difference
is calculated in the opposite direction which can be detected by the
smallest finite difference [65].

As both fluids are transparent, the thickness T (x,y) is used to
attenuate the refracted color [65]. So, the thicker the fluid, the less
background should be seen. To create the illusion of a refraction,
the thickness is also used to linearly perturb the background pixel
color as seen in Eq. (12).

a = lerp(C f luid ,B(x+βnnnx +βnnny),e−T (x,y)) (11)

β = T (x,y)γ (12)

where B is the background color, γ is a constant which depends
on the fluid and is used to determine how much the background is
perturbed.

Then, the final color is the sum of both fluid colors and can be
calculated as Eq. (13).

C f inal = k(C f1 +C f2) (13)

where k is a saturation coefficient, which avoids the image to become
oversaturate, f1 and f2 are fluid one and the other fluid, respectively.

4 TEST CASES

To validate both multiphase SPH and rendering technique two test
cases were performed: a density equilibrium and a 3D double dam
break.



4.1 Density Equilibrium
In the first test, two fluids with different densities, 1000 kg/m3 and
3000 kg/m3, are inside a container. This test is made to validate the
behavior of two fluids with different densities that after some time
behave in a way that the heavier fluid must be under the lightest one.

The denser fluid column has a height h of 1m, width L and depth
D of 3m, while the lighter fluid has height H of 2m, width L and
depth D of 3m and the boundary is a box with height Hb of 6m,
width L and depth D of 3m as can be seen in Fig. 3.

Figure 3: Density equilibrium test case. The denser fluid is illustrated
by the blue particles and the lighter is represented by the green
particles.

The test case was done with a 40k fluid particles, initial spacing of
0.085m and XSPH constant equal to 0.08 and4t of 0.0005 seconds.

4.2 3D Double Dam Break
The second test case is a 3D double dam break, where the fluid on
the left has a density of 1000 kg/m3, and the other fluid has a density
of 3000 kg/m3. This scenario is useful for solving flows that have a
constant free-surface variation. Both fluids columns have a height
H, width L and initial depth D of 3m, and the bottom side of the
domain has width size of 12m, as can be seen in Fig. 4.

Figure 4: 3D double dam break test case. The denser fluid is illus-
trated by the blue particles and the lighter is represented by the green
particles.

The test case was done with 400k fluid particles, XSPH constant
equals to 0.08 and4t of 0.0005 seconds.

Also, two different configurations were constructed for the 3D
dam break, one with 100k and another with 400k fluid particles, to

Table 1: Comparison of performance (fps) varying the percentage of
screen filled.

Percentage of screen filled (%) Performance (fps)
25 60
50 40
75 15

100 10

analyze the influence of the particle number in the surface recon-
struction result. And finally, to understand how the particles number
influences the performance, three scenarios were used: 100k, 500k
and 1M fluid particles.

5 RESULTS

The proposed method was implemented on the open-source code
DualSPHysics [20], which is written in C++, uses a grid to calcu-
late the neighborhood of a particle and OpenMP to accelerate the
calculations being able to simulate up to millions of particles. The
rendering solution was implemented using C++, OpenGL and GLSL
shader language version 4.1.

The CPU used to run the test cases was an Intel Core i7-4790L
CPU @ 4.00 GHz with 32 GB of installed RAM and a Windows
10 64-bit operating system (x64). The GPU used was a NVIDIA
GeForce 960 with 4 GB of RAM.

The rendering was done in 1024 x 768 resolution, which is the
resolution used in [65], and the reference paper was able to achieve a
performance between 44 and 55 fps for 64k particles. Although this
article results cannot be compared with our results, it is important to
notice that this technique reaches a real-time performance.

5.1 Density Equilibrium
The simulation proved to have a realistic behavior as the denser
liquid goes to the bottom of the container over time and the XSPH
was able to create realistic boundary conditions, as can be seen in
the right part of Fig. 5. However, the simulation took a lot of time to
converge, because the XSPH method has a big influence in particles
with a few neighbors of the same fluid.

5.2 3D Double Dam Break
In the second test case, the expected behavior is also achieved as the
denser liquid goes to the bottom of the container but also pushes the
other fluid to the top, as can be seen in the middle of Fig. 6. It is
also possible to notice the XSPH contribution as the fluid stick to
the wall due to its viscosity and also the boundary condition is well
established, as visualized in the right part of Fig. 6.

5.3 Rendering Performance
The render proved to have visually plausible results being able to
identify each layer of fluid individually, the interface between two
fluids and when they are mixed as can be seen in left part of Fig. 5.
Also, as shown in the work of Laan, Green and Sainz [65], the
thickness influence on the color and the transparency of the fluid
were able to create a more realistic result.

The rendering had a performance of up to 60 fps depending on
how close the camera was to the fluid, as can be seen in Table 1,
which compared the performance (fps) on how the fluid filled the
screen. The performance drop happens because, if the camera is too
close to the fluid, more pixels will be smoothed and more processing
will happen.

The four scenarios used in the comparison aforementioned were
tested with three different number of fluid particles: 100k, 500k
and 1M. It was noticed that the growth in the number of particles
practically does not affect the cases in which the fluid filled 25%,
but, as the number of particles increases the performance drops in
the other three scenarios, as can be seen in Table 2.



Figure 5: Density equilibrium results. Left: initial stated (t= 0s). Right: t = 10s.

Figure 6: 3D Double Dam Break results. Left: initial stated (t = 0s). Middle: t = 2s Right: t = 5s.

Table 2: Comparison of performance (fps) varying the Percentage of
screen filled and the number of particles.

% screen filled \n particles 100k 500k 1M
25% 60 60 60
50% 43 31 15
75% 27 20 10

100% 18 15 7

The happens because, as the number of particles increases, the
input for the surface reconstruction and surface thickness calculation
also increases.

The number of particles also influences the surface reconstruction.
For the same particle size, as the number of particles increases, the
surface reconstruction is smoother. These results can be seen in
figure Fig. 7, which compares the smoothing results for 100k, 500k
and 1M fluid particles.

As the number of particles increases, the smoothing results im-
proves, which can be observed by comparing the left and middle
results from Fig. 7. But, as the number keeps increasing, the im-
provement is almost imperceptible, which can be seen by comparing
the middle and right results from Fig. 7.

6 CONCLUSION

This work had a twofold contribution: to propose a multiphase SPH
formulation by extending the work of Vieira-e-Silva et al. [22] to
validate if the XSPH can be integrated with a multiphase solution
and to propose a render solution for this kind of simulation.

The proposed SPH method was able to simulate multiphase fluids
but, to achieve that purpose, the XSPH must only be calculated for
fluid particles. The method was implemented on the DualSPHysics
open-source code and can be simulated up to millions of particles.

The rendering solution was able to render the fluid with perfor-
mance between 10 and 60 fps for 400k fluid particles. The solution
was implemented using GLSL and has the particle position as primi-
tive, so, it can be used on other particle-based simulation methods,
MPS [36], PIC [34]. The approach has limitations, such as the so-
lution only deals with two fluids, only supports non-miscible fluids
and the refraction is not realistic.

6.1 Future Works
This work can be improved in many ways. First, for the SPH model,
a new force can be added to be able to control interface tension and
to perform a more realistic simulation [59]. Also, a GPU solution
can be used to achieve real-time simulation performance. Finally,
the model can be used for coastal and other hydraulic applications
to validate the model in a real world problem [66].

The rendering solution can also be improved. First, the solution
should be able to render more than two fluids. Also, a more accurate
blur function can be used such as the one proposed in the work
of Reichl, Chajdas and Schneider [54]. Another possibility is to
integrate the proposed solution into a ray tracing solution to be able
to create a more realistic result [68].
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[60] B. Solenthaler, J. Schläfli, and R. Pajarola. A unified particle model
for fluid–solid interactions. Computer Animation and Virtual Worlds,
18(1):69–82, 2007.

[61] J. Swegle, D. Hicks, and S. Attaway. Smoothed particle hydrodynamics
stability analysis. Journal of computational physics, 116(1):123–134,
1995.

[62] K. Szewc, J. Pozorski, and J.-P. Minier. Analysis of the incompressibil-
ity constraint in the smoothed particle hydrodynamics method. Interna-
tional Journal for Numerical Methods in Engineering, 92(4):343–369,
2012.

[63] A. M. Tartakovsky and P. Meakin. A smoothed particle hydrodynamics
model for miscible flow in three-dimensional fractures and the two-
dimensional rayleigh–taylor instability. Journal of Computational
Physics, 207(2):610–624, 2005.

[64] A. M. Tartakovsky and P. Meakin. Pore scale modeling of immisci-
ble and miscible fluid flows using smoothed particle hydrodynamics.
Advances in Water Resources, 29(10):1464–1478, 2006.

[65] W. J. van der Laan, S. Green, and M. Sainz. Screen space fluid ren-
dering with curvature flow. In Proceedings of the 2009 symposium on
Interactive 3D graphics and games, pp. 91–98. ACM, 2009.

[66] D. Violeau and B. D. Rogers. Smoothed particle hydrodynamics (sph)
for free-surface flows: past, present and future. Journal of Hydraulic
Research, 54(1):1–26, 2016.

[67] Z. Wang and Y. Wang. Haptic interaction with fluid based on smooth
particles and finite elements. In International Conference on Computa-
tional Science and Its Applications, pp. 808–823. Springer, 2014.

[68] X. Xiao, S. Zhang, and X. Yang. Real-time high-quality surface ren-
dering for large scale particle-based fluids. In Proceedings of the 21st
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games,
p. 12. ACM, 2017.

[69] R. Xu, P. Stansby, and D. Laurence. Accuracy and stability in incom-
pressible sph (isph) based on the projection method and a new approach.
Journal of Computational Physics, 228(18):6703–6725, 2009.

[70] X. Yan, Y.-T. Jiang, C.-F. Li, R. R. Martin, and S.-M. Hu. Multiphase
sph simulation for interactive fluids and solids. ACM Transactions on
Graphics (TOG), 35(4):79, 2016.

[71] X. Yang, M. Liu, and S. Peng. Smoothed particle hydrodynamics
modeling of viscous liquid drop without tensile instability. Computers
& Fluids, 92:199–208, 2014.

[72] J. Yu and G. Turk. Reconstructing surfaces of particle-based fluids
using anisotropic kernels. ACM Transactions on Graphics (TOG),
32(1):5, 2013.

[73] J. Yu, C. Wojtan, G. Turk, and C. Yap. Explicit mesh surfaces for
particle based fluids. In Computer Graphics Forum, vol. 31, pp. 815–
824. Wiley Online Library, 2012.

[74] Y. Zhang, X. Ban, X. Liu, and X. Wang. Adaptiving time steps for
sph cloth-fluid coupling. In Cyberworlds (CW), 2016 International
Conference on, pp. 143–146. IEEE, 2016.

[75] Y. Zhang, B. Solenthaler, and R. Pajarola. Adaptive sampling and
rendering of fluids on the gpu. In Proceedings of the Fifth Eurograph-
ics/IEEE VGTC conference on Point-Based Graphics, pp. 137–146.
Eurographics Association, 2008.

[76] X. Zhu, L. Cheng, L. Lu, and B. Teng. Implementation of the moving
particle semi-implicit method on gpu. SCIENCE CHINA Physics,
Mechanics & Astronomy, 54(3):523–532, 2011.

[77] T. Zirr and C. Dachsbacher. Memory-efficient on-the-fly voxelization
of particle data. In EGPGV, pp. 11–18, 2015.


	Introduction
	State of art
	Related Work

	Simulation and Rendering Methods
	SPH Formulation
	Handling Multiphase Simulation

	Multiphase Rendering Solution
	Surface Reconstruction
	Surface Thickness Calculation
	Surface Smoothing Method
	Final Shading


	Test Cases
	Density Equilibrium
	3D Double Dam Break

	Results
	Density Equilibrium
	3D Double Dam Break
	Rendering Performance

	Conclusion
	Future Works


