

SPH for Visual Applications

Caio José dos Santos Brito

September 2014

Summer Project Document submitted to the University of Wales, Swansea

in Partial Fulfilment for the Degree of Bachelor of Science

Department of Computer Science

University of Wales Swansea

1

Declaration

This work has not previously been accepted in substance for any degree and is not

being concurrently submitted for any degree.

Name: ……………..

Signed: …………….

Date: ………………..

Statement 1

This dissertation is being submitted in partial fulfillment of the requirements of the

Science without Borders Programme.

Signed: …………….

Date: ………………

Statement 2

This dissertation is the result of my own independent work / investigation, except

where otherwise stated. Other sources are specifically acknowledged by clear cross

referencing to author, work and page(s) using the bibliography / references section. I

understand that failure to do this amounts to plagiarism and will be considered

grounds for failure in this dissertation and the degree examination as a whole.

Signed: …………….

Date: ……………….

Statement 3

I hereby give consent for my dissertation to be available for photocopying and for

inter-library loan, and for the title and summary to be made available to outside

organizations.

Signed: …………….

Date: ………………..

2

Abstract

This project have the goal of implementing a Smoothed Particle Hydrodynamics (SPH)

for liquid simulations based in the paper Ghost SPH for Animating Water by Schechter

and Bridson. The algorithm creates new layer of particles around the surface using a

Poisson Disk scheme to solve the free surface problem. To test the algorithm, three test

cases were done using a 2D Dam Break problem and used Metaballs rendering method

to show the results. The simulation proved realistic but with a long time to create the

new layers of particles and the rendering give a proper result.

3

Acknowledgment

I want to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico

(CNPq) for the sponsorship and the Universidade Federal de Pernambuco (UFPE) for

the suport. I am thankfull to Swansea University for the study and reasearch opportunity

and also would like to thank Dr. Mark Jones and Dr. Chengfeng Li for tutoring me in

the project.

4

Contents
 Introduction .. 5

1.1 Motivation ... 5

1.2 Related Work ... 5

1.3 Objectives .. 5

 Method ... 6

2.1 Basic SPH .. 6

2.2 Ghost SPH ... 8

2.2.1 XSPH Artificial Viscosity .. 9

2.2.2 Ghost particles in the air .. 9

2.2.3 Sampling Algorithm ... 10

2.2.4 Free Surface Tracking .. 11

2.3 Rendering .. 11

2.3.1 Surface Splatting .. 11

2.3.2 Marching Cubes ... 12

2.3.3 Metaball ... 13

 Test Case .. 14

 Results .. 15

4.1 Test 1 ... 16

4.2 Test 2 ... 17

4.3 Test 3 ... 19

 Conclusion and future work ... 21

 References .. 22

5

 Introduction

1.1 Motivation

Scenes involving fluid phenomena as oceans, smoke, and fire has been increasingly

common in the animation movie scenery and in the game industry and usually are the

most spectacular visual effects using realistic rendering or not.

Pixar’s movies, for instance, always brings some new improvement related to physics

simulation either in fluids simulation as in many other kinds of computer simulation

like hair [1], clothes [2] or deformable models [3].

In the movie Cars 2, the studio implemented a simulation for ocean surface using the J.

Tessendorf’s wave system [4]. In Ratatouille the studio used their in-house simulator,

splasht [5], which is used to create particles-based simulation.

Although Computation Fluid Dynamics (CFD) is quite stablished and well used, there

are still some open problems in the field as turbulence, free surface, surface tension,

high performance simulation.

This project have the focus in Smoother Particle Hydrodynamics (SPH), which is a

CFD approach that represent fluids as a fixed number of particles that interact via kernel

functions

1.2 Related Work

SPH method was created by Lucy, Gingold and Monaghan in 1977 to simulate

astrophysical phenomena [6], and later was used for fluids. Initially used for simulation

just a small quantity of particles, the method was extended to a greater number of

particles and used for interactive application [7].

In [8] SPH is used to simulate fluids with turbulence using a modified way to compute

the velocity of the particles and so creating a better stability in the simulation and a

removing noisy motion. Solenthaler [9] proposed a modified SPH for a simulation for

different fluids mixed and Teschner [10] implemented a SPH algorithm to simulate

rigid-fluid simulation.

SPH is also used to simulation material that have a similar behaviour, as in [11] wich

the technique is used to simulate sand.

Most of those simulations are done offline but there are many applications research for

real time simulations, which is the case of [12] which uses GPU programming to

accelerate the simulation process.

1.3 Objectives

The goal of this project is to implement a SPH simulation in 2D based on the approach

proposed by Schechter and Bridson, Ghost SPH for Animating Water [13].

These proposal describe how to sample ghost particles in the air and how to extrapolate

the fluid characteristics to the ghost particles. Therewith, the free surface problem [6]

can be solved and the simulation can have a greater liquid behaviour.

Other aim is to render the simulation results, to achieve this purpose Metaballs (Blob)

technique was used to give a proper rendering [14].

6

 Method

2.1 Basic SPH

Smoothed Particle Hydrodynamics is a Lagrangian approach that treats the continuum

as a finite number of particles. The fluid in the continuum form has position 𝑥, velocity

𝑢, density 𝜌, pressure P, mass m and their movement are described by equation 1[6].

𝜌
𝑑�⃗�

𝑑𝑡
= ∇𝑃 + ∇ ∙ 𝜏 + 𝐹𝑒𝑥𝑡 (1)

where 𝜏 is the viscosity, 𝐹𝑒𝑥𝑡 is the body force and t is the time.

The SPH method discretize the fluid into a set of particles 𝑖 with the same attributes

described above and with a radius of action ℎ, as illustrated in Figure 1

Figure 1-Scheme showing a particle with its radios of action

In the method any attributes A(x) can be described as (2)

𝐴(𝑖) = ∑𝑚𝑗
𝐴𝑗

𝜌𝑗
𝑊(𝑥𝑖 − 𝑥𝑗 , ℎ)

𝑗

 (2)

where W is the kernel function and j are the neighbour particles.

The kernel function W is a smooth, symmetric, normalized function with finite support,

the same function can be used to many variables or a different kernel to an each variable

From this equation the gradient and the laplacian can be calculated as in (3) and (4)

∇𝐴(𝑖) = ∑𝑚𝑗
𝐴𝑗

𝜌𝑗
∇𝑊(𝑥𝑖 − 𝑥𝑗 , ℎ)

𝑗

 (3)

∇2𝐴(𝑖) = ∑𝑚𝑗
𝐴𝑗

𝜌𝑗
∇2𝑊(𝑥𝑖 − 𝑥𝑗 , ℎ)

𝑗

 (4)

To get the neighbourhood from a single particle, a geometric comparison is used

between the distances of two particles. If a couple of particles are within a distance less

than the radius of action, those particles are neighbours of each other.

The density of a particle can be calculate with respect to its neighbourhood, using

equation (5) or using the convergence equation (6).

7

𝜌𝑖 =∑𝑚𝑗
𝑗

𝑤𝑖𝑗 (5)

𝑑𝜌𝑖
𝑑𝑡

=∑𝑚𝑗(𝑣𝑖 − 𝑣𝑗)

𝑗

∇w𝑖𝑗 (6)

There are many form of calculation the pressure exerted on a particles by the other

particles. For high compressibility an ideal gas equation (7) can be used; if the

simulation requires an incompressibility of the fluid the Poisson equation (8) can be

used; or the Tait’s equation (9) can be used to enforce a very low density variation and

leads to an efficient computation [15].

𝑃𝑖 = 𝑘𝑝(𝜌𝑖 − 𝜌0) (7)

∇ ∙ (
1

𝜌
∇𝑃𝑛+1)

𝑖

=
1

∆𝑡
∇ ∙ 𝒖𝑖 (8)

𝑃𝑖 = 𝐵((
𝜌𝑖
𝜌0
)𝛾 − 1) (9)

Where 𝑘𝑝 and B are the pressure constants and 𝜌0 is the rest density of the fluid and 𝛾

is a constant that usually has a value 7.

The pressure force can be calculate using the discretization of the pressure gradient,

which will result in (10), this formula is largely used because ensures a modular equality

between two particles and conserves linear and angular momentum, creating a greater

stability in the simulation [6].

𝐹 = −𝑚𝑖∑𝑚𝑗
𝑗

(
𝑃𝑖
𝜌2

𝑖

+
𝑃𝑗

𝜌2
𝑗

)∇w𝑖𝑗 (10)

To calculate the viscosity usually an artificial viscosity is used, as in Becker and

Teschner research [15], that uses equation (11) which conserves linear and angular

momentum.

𝑑𝑣𝑖
𝑑𝑡

= {
−∑𝑚𝑗𝛱𝑖𝑗∇w𝑖𝑗 𝑣𝑖𝑗

𝑇𝑥𝑖𝑗 < 0

𝑗

0 𝑣𝑖𝑗
𝑇𝑥𝑖𝑗 < 0

To prevent the fluid to escape from its recipient, the Lennad-Jones method is used to

create a repulsive force near boundary particles [6].

The particle velocities is calculated doing a simple integration using (11) and the new

position is found using (12).

𝑣𝑖 = 𝑣𝑖 + 𝑎𝑖∇𝑡 (11)

𝑥𝑖 = 𝑥𝑖 + 𝑣𝑖𝛻𝑡 (12)

8

2.2 Ghost SPH

These technique is a variation of the Basic SPH created by Schecter and Bridson [13],

that dynamically create a number of ghost particles in the surface of the fluid with a

blue noise distribution and extrapolate the technical features of the particles into the

new ghost particles to use those particles in some of the calculations. The algorithm can

be summarized as in the Figure 2

Figure 2 – Flow diagram from the Ghost SPH

In the Ghost SPH, uses a Cubic Spline kernel (13) , the density is calculated by using

the convergence equation and it uses Tait’s equation (9), with a B = 2000, to solve the

pressure equation. As in the Basic SPH, the pressure force is calculated using (6) and

the velocities and position are calculated by a simple integration.

9

𝑤(𝑟 − 𝑟 , ℎ) = 𝑤(𝑅, ℎ) = 𝛼𝑑 ×

{

2

3
− 𝑅2 +

1

2
𝑅3 0 ≤ 𝑅 < 1

1

6
(2 − 𝑅)3 1 ≤ 𝑅 < 2

0 𝑅 ≥ 2

 (13)

2.2.1 XSPH Artificial Viscosity

Different of the basic algorithm uses a simpler XSPH style of damping noise which is

cheaper and easier to tune [13].

With that change, an intermediate velocity 𝑣∗ is created (14) and is used to calculate

the velocity with the viscosity force (15)

𝑣𝑖
∗ = 𝑣𝑖 + 𝑎𝑖∇𝑡 (14)

𝑣𝑖 = 𝑣𝑖
∗+ ∈∑𝑚𝑏

(𝑣𝑖
∗ − 𝑣𝑗

∗)

𝜌�̅�
𝑤𝑖𝑗

𝑗

 (15)

2.2.2 Ghost particles in the air

To solve the free surface density problem, air particles are created in the beginning of

each time step inside the kernel radius of the liquid, as can be seen in Figure 3

Figure 3 – Ghost particles in the air. Fluids particles are shown in blue and ghost particles in grey.

Figure taken from [13]

Each new ghost particle has some characteristic:

 Mass of a liquid particle

 Velocity equals of the nearest liquid particle

 Density equal to the rest density, with that will be under P = 0 creating a free

surface boundary condition.

 Contributes to the density calculation

 No contribution to the pressure force

 Explicitly excluded from the XSPH artificial viscosity

10

Those new particles in the simulation fill a enough layer around the surface, with that,

the free surface density problem is solved, as it can be seen in the Figure 4 that shows

the result from a zero-gravity hydrostatic test with Basic SPH vs Ghost SPH. The Ghost

method keeps the fluid stable, keeping the shape and the volume as the original,

meanwhile the Basic SPH does not conserves the shape and volume, creating a (free

surface problem) [13].

(a) (b)

(c) (d)

Figure 4 – Hydrostatic Test.(a) Ghost SPH in 2D; (b) Basic SPH in 2D; (c) Ghost SPH in 3D (d) Basic

SPH in 3D. Figure taken from [13]

2.2.3 Sampling Algorithm

To sample the new particles in the simulation a Poisson disk pattern is used, with that,

is guaranteed that each new particle is at a minimum distance from other and to create

this pattern the Brinson’s fast rejection-based approach is used [16].

These algorithm can be explained in a series of steps:

Select an initial sample from the domain and insert on an “active list” (array of samples)

While the list is not empty

 Choose a random sample, x, from the active list

 Generate up to k points inside a sphere with radius r and 2r around x

 For each new point, check if it is within a distance r of all sample

 If the new point is far enough from all samples

 The new point is created and is add to the active list

 If after k attempts no new point is created

 Remove x from the active list

In the SPH simulation, instead of using random fluid particles, every surface particles

is inside the “active list”

11

The ghost particles algorithm above compared with a grid sampling gets better results

because solve the anisotropic shell development problem [15], with some time the free

surface gets with a shorter spacing between particles which can lead to instability in the

simulation, as can be seen in Figure 5 .

Figure 5 - Grid sampling the air vs Poisson dis. (a) Initial grid (b) 500 frames later, with an anisotropic

shell developed. (c) Initial Poisson disk. (d) 500 frames later, essentially unchanged. Figure taken from

[13]

2.2.4 Free Surface Tracking

To find the surface particles, the divergence of the positing (16) is applied.

∇𝑥𝑖 = ∑
𝑚𝑗

𝜌𝑖
𝒓𝑖𝑗 ∙

𝑗

∇w𝑖𝑗 (16)

If a particle is far from the free surface, the divergence has a value bigger than a

threshold and much less than the threshold due to the lower number of neighbouring

particles on your domain. Usually the value used is 2, but in the simulations made, a

value 1.5 is used [17]

2.3 Rendering

Most of the techniques used to render a SPH result is based in surface reconstruction

like Marching Cubes or Point Splatting [7]. Those techniques render the result

reconstructing an iso-surface.

In the project the technique used to render the results from the simulation was

Metaballs, also named as Blobs [14]. The technique was chosen since can simply render

2D points with a low cost, because different of other techniques, this does not generate

a list of polygons, instead, it uses only the points of the simulation.

2.3.1 Surface Splatting

Splatting [21] is a simple and efficient algorithm for rendering point surfaces. The

method uses z-buffer to resolve visibility, can be process the data set without any

additional structures of acceleration but can be combined with some structures of

acceleration to obtain a better result in the rendering.

12

In a naive approach of a projection point based method, each 3D point of the scene and

give the color of the point to the pixel found in the projection, as can be seen in Figure

6.a).That approach leads to holes in the rendered image if the surface do not have a high

level of density points.

To solve this problem, the spatting technique uses a footprint function that gives an

intensity to the contribution of the point in the pixels, illustrated in Figure 6.b).

(a) (b)

Figure 6 – (a) Scheme of a naïve point based projection method; (b) Scheme of the

splatting technique. Figure taken [21]

If each pixel of the image can be denoted by a function 𝜃(𝑥, 𝑦), to calculate the color

of each pixel, for each channel (R.G.B) we use (17) to find the color.

𝜃(𝑥, 𝑦) = ∑𝑐𝑖𝜌𝑖(𝑥, 𝑦)

𝑖

 (17)

where i represents each point of the scene, 𝜌 is th footprint function and c are the

color value of each point.

2.3.2 Marching Cubes

The marching cubes technique [22] uses a divide to conquer approach which the scene

is processed from cells (voxels), equivalents to cubes. In each cell, the intersections

between each of its 12 edges its isosurface

The vertices values are compared with a value associated to the isosurface, each vertex

is classified as “in” or “out” of the isosurface and with the vertices a set of triangles is

made to approximate the isosurface, as can be seen in Figure 7

13

Figure 7 – Triangulated Cubes. Figure taken from [22]

The main advantage of this technique lies in the fact that the processing of a cell is

independent of each other, allowing their parallelization, however, as a drawback, it can

a cause holes in the isosurface due to topological ambiguities between cases

In general, many case processed by the marching cubes algorithm are empty, which

will lead to unnecessary cost, to minimize this cost, spatial data structures are used to

process only the active cells.

2.3.3 Metaball

Metaball is an iso-surface of a scalar fields, in that case, their surface has an influence

in each point. If the influence is equal to a threshold values, a surface is found, otherwise

it isn`t. With a system with more than one metaball their influence can be added to get

the spheres influence together [14].

The strength of a blob can be positive or negative and it is relative to the core of the

blob. If a blob have a positive strength, the blob creates a force of attraction in the other

metaballs; if it is a negative value, the blob repels the other; if it has a 0 value, does not

creates any force to the system.

The threshold determines the strength of each blob and it has some characteristics [14]:

1. Must have a positive value.

2. If is a large number, the surface gets closer to the center of the blob.

14

3. If is a small number, the surface gets close to the surface of the blob.

The influence of a metaball can be calculate by the density function [14], the influence

can be calculated as (18)

density = 𝑠𝑡𝑟𝑒𝑛𝑔ℎ𝑡 ∙ (1 − (
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑟𝑎𝑑𝑖𝑢𝑠
)
2

)2 (18)

 Test Case

To see the performance of the algorithm, three 2D dam break test case were made, all

of them were based in the paper of Staroszczyk [18] which are illustrated in the Figure

8 with the parameters bellow:

 L = H = 0.6

 3600 fluid particles

 Initial Spacing between the particles = 0.01m

 ∇𝑡 = 0.0005 𝑠
 Mass = 0.225g

 No initial velocity or acceleration

 Boundary were created with the same parameters but with half of the initial

spacing

D

Figure 8 – Scheme of the Dam Break Test. Figure taken from [18]

This test case is a classic test, this comes from the fact that the test can be compared to

the experimental and analytical results, as can be seen in [23], [24] and [18].

15

 Results

Each test case was simulated were run on an Intel Core i7 with 8 GB of memory. To

render the results, a PovRay [19] code were produced and send it to the software to

render the simulation result as can be seen in Figure 9.c) and also a xml file were created

to see the results in the software ParaView [20] that can be make a simple animation of

the results just rendering the points like in Figure 9.a)

To implement the method was used C++, the code was modularized so new formulas

can be easily added or in case of new test case, this part of the code can be seen below

densityCalculator22D(particles, h); //calculate the density

pressureCalculator2D(particles, rho0); //calculate the pressure

pressureForceCalculator2D(particles); //add pressure and gravity forces

velocityCalculator2D(particles, dt); //calculate the velocity

velocityXSPHCalculator2D(particles, dt, 0.05); //Calculate the viscosity

positionCalculator2D(particles, dt); //update the position

If it’s necessary to include some new component as turbulence or same boundary

conditions this can be add just including a new method and passing the particles as a

parameter. For instance, if a turbulence calculater were added, the code should look like

these:

densityCalculator22D(particles, h); //calculate the density

pressureCalculator2D(particles, rho0); //calculate the pressure

pressureForceCalculator2D(particles); //add pressure and gravity forces

turbulenceCalculator(particles, attributes);

velocityCalculator2D(particles, dt); //calculate the velocity

velocityXSPHCalculator2D(particles, dt, 0.05); //Calculate the viscosity

positionCalculator2D(particles, dt); //update the position

The particles attributes can be easily accessed from the created struct, as can be seen

below:
struct Particle2D{

 Vector2D <double> position;
 Vector2D <double> velocity;
 Vector2D <double> intVelocity;
 Vector2D <double> acceleration;

 double mass;
 double pressure;
 double initialPressure;
 double density;

16

 int type; // 0 for fluid, 1 for board, -1 for ghost
 int freeSurface; //1 for true, 0 for false
 vector<int> neighbors;

 vector< double > kernel;
 vector< Vector2D<double> > kernelGrad;

};

4.1 Test 1

The first test is a common dam break, which, after a while, the particles from the bottom

of the column of water have greater velocity than the particles from the top, creating a

runoff of the fluid, which can be seen in the Figure 9

(a)

(b)

(c)

17

(d)

Figure 9 – Teste Case 1: (a) Initial configuration; (b) Initial configuration after ghost particles creation

(c) Result after 500 time steps using blobs to render; (d) Result after 2300 time steps using blobs to

render

Comparing the result from the Ghost SPH with the Basic SPH, can be seen that the

result of the Ghost SPH have bigger stability. This fact can be seen in the Figure 10, the

top left corner gets unstable using the Basic SPH, and some particles start to untie from

the fluid, that problem was solved using the Ghost SPH.

Figure 10 – Test case 1 result comparison: (a) Ghost SPH; (b) Basic SPH

4.2 Test 2

The second test is a dam break with the fluid begging in the middle of the recipient, is

expected that each half of the fluid have the same flow, as illustrated in the Figure 11

(a)

18

(b)

(c)

(d)

Figure 11 – Test Case 2: (a) initial configuration; (b) initial configuration after ghost creating; (c)

simulation after 400 tie steps using metaballs to render (d) simulation after 2000 time steps using blobs

to render

19

4.3 Test 3

The last test case is similar to the Test 1, but in the recipient there is obstacle that will

change the flow of the fluid, as demonstrated bellow (Figure 12)

(a)

(b)

(c)

20

(d)

Figure 12 – Test Case 3: (a) Initial configuration; (b) initial configuration after ghost creation; (c)

Initial configuration using blob to render; (d) simulation result after the shock with the obstacle

The results show a realistic look in the simulation but show some problems in the

boundary condition since some particles are adhered to the wall though is just a small

part of the sample which only create a small instability to the system.

21

 Conclusion and future work

This project have the aim to implement a SPH based on the Ghost SPH [13], which

generates ghost particles on the surface to solve the free surface problem and create a

more realistic simulation.

The test case show that the simulation creates smooth simulation with a real look, solves

the free surface problem because completes the action radius with particles and have to

be done offline since of the big time consumption with the creation of the new particles

at each time step.

In the future, is planned to improve the boundary condition, create simulations in 3D

and to solve the problem with the time computation, GPU programing could be used,

since the particles are geometric independent of each other, becoming easy to

parallelize, e.g., each particle calculation is performed by one thread.

22

 References

[1] Baraff D, Witkin A, Kass M. Untangling cloth. ACM Trans Graph. 2003;22(3):862-

70.

[2] Iben H, Meyer M, Petrovic L, Soares O, Anderson J, Witkin A. Artistic simulation

of curly hair. Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium

on Computer Animation; Anaheim, California. 2485913: ACM; 2013. p. 63-71.

[3] Irving G, Schroeder C, Fedkiw R, editors. Volume conserving finite element

simulations of deformable models. Proceedings of the ACM SIGGRAPH

Conference on Computer Graphics; 2007.

[4] Tessendorf J. Simulating ocean water. Simulating Nature: Realistic and Interactive

Techniques SIGGRAPH. 2001;1.

[5] Froemling E, Goktekin T, Peachey D. Simulating whitewater rapids in Ratatouille.

ACM SIGGRAPH 2007 sketches; San Diego, California. 1278862: ACM; 2007. p.

68.

[6] Monaghan JJ. Smoothed particle hydrodynamics. Reports on Progress in Physics.

2005;68(8):1703.

[7] M Muller, Charypar D, Gross M. Particle-based fluid simulation for interactive

applications. Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium

on Computer animation; San Diego, California. 846298: Eurographics Association;

2003. p. 154-9.

[8] Monaghan JJ. SPH compressible turbulence. Oxford, ROYAUME-UNI: Blackwell;

2002.

[9] Solenthaler B, Pajarola R. Density contrast SPH interfaces. Proceedings of the 2008

ACM SIGGRAPH/Eurographics Symposium on Computer Animation; Dublin,

Ireland. 1632623: Eurographics Association; 2008. p. 211-8.

[10] Akinci N, Ihmsen M, Akinci G, Solenthaler B, Teschner M. Versatile rigid-fluid

coupling for incompressible SPH. ACM Trans Graph. 2012;31(4):1-8.

[11] Alduan I, Otaduy MA. SPH granular flow with friction and cohesion.

Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer

Animation; Vancouver, British Columbia, Canada. 2019410: ACM; 2011. p. 25-32.

[12] Krog OE, Elster AC. Fast GPU-Based fluid simulations using SPH. Proceedings

of the 10th international conference on Applied Parallel and Scientific Computing

- Volume 2; Reykjavík, Iceland. 2187012: Springer-Verlag; 2012. p. 98-109.

[13] Schechter H, Bridson R. Ghost SPH for animating water. ACM Trans Graph.

2012;31(4):1-8.

[14] PovRay (Org). Blob. <

http://www.povray.org/documentation/view/3.6.0/275/>. Accessed in 10/08/2014

[15] Becker M, Teschner M. Weakly compressible SPH for free surface flows.

Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on

Computer animation; San Diego, California. 1272719: Eurographics Association;

2007. p. 209-17.

[16] Bridson R. Fast Poisson disk sampling in arbitrary dimensions. ACM

SIGGRAPH 2007 sketches; San Diego, California. 1278807: ACM; 2007. p. 22.

[17] Chen Z, Zong Z, Liu MB, Li HT. A comparative study of truly incompressible

and weakly compressible SPH methods for free surface incompressible flows.

International Journal for Numerical Methods in Fluids. 2013;73(9):813-29.

[18] Staroszczyk R. Simulation of dam-break flow by a corrected smoothed particle

hydrodynamics method. Arch Hydro-Eng Environ Mech. 2010;57(1):61-79.

23

[19] PovRay (Org). PovRay. <http://www.povray.org>. Accessed in 10/08/2014

[20] KITWARE (Org). ParaView. < http://www.paraview.org>. Acessed in

20/08/2014.

[21] Gross M, Pfister H. Point-Based Graphics: Morgan Kaufmann Publishers Inc.;

2007.

[22] Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface

construction algorithm. SIGGRAPH Comput Graph. 1987;21(4):163-9.

[23] Zheng, Xing, Duan, Wen-yang. Numerical simulation of dam breaking using

smoothed particle hydrodynamics and viscosity behavior. Heidelberg,

ALLEMAGNE: Springer; 2010.

[24] Liu MB, Xie WP, Liu GR. Modeling incompressible flows using a finite

particle method. Applied Mathematical Modelling. 2005;29(12):1252-70.

