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Abstract 
 

This project have the goal of implementing a Smoothed Particle Hydrodynamics (SPH) 

for liquid simulations based in the paper Ghost SPH for Animating Water by Schechter 

and Bridson. The algorithm creates new layer of particles around the surface using a 

Poisson Disk scheme to solve the free surface problem. To test the algorithm, three test 

cases were done using a 2D Dam Break problem and used Metaballs rendering method 

to show the results. The simulation proved realistic but with a long time to create the 

new layers of particles and the rendering give a proper result. 
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 Introduction 
 

1.1 Motivation 
 

Scenes involving fluid phenomena as oceans, smoke, and fire has been increasingly 

common in the animation movie scenery and in the game industry and usually are the 

most spectacular visual effects using realistic rendering or not. 

Pixar’s movies, for instance, always brings some new improvement related to physics 

simulation either in fluids simulation as in many other kinds of computer simulation 

like hair [1], clothes [2] or deformable models [3]. 

In the movie Cars 2, the studio implemented a simulation for ocean surface using the J. 

Tessendorf’s wave system [4]. In Ratatouille the studio used their in-house simulator, 

splasht [5], which is used to create particles-based simulation. 

Although Computation Fluid Dynamics (CFD) is quite stablished and well used, there 

are still some open problems in the field as turbulence, free surface, surface tension, 

high performance simulation. 

This project have the focus in Smoother Particle Hydrodynamics (SPH), which is a 

CFD approach that represent fluids as a fixed number of particles that interact via kernel 

functions 

 

1.2 Related Work 
 

SPH method was created by Lucy, Gingold and Monaghan in 1977 to simulate 

astrophysical phenomena [6], and later was used for fluids. Initially used for simulation 

just a small quantity of particles, the method was extended to a greater number of 

particles and used for interactive application [7]. 

In [8] SPH is used to simulate fluids with turbulence using a modified way to compute 

the velocity of the particles and so creating a better stability in the simulation and a 

removing noisy motion. Solenthaler [9] proposed a modified SPH for a simulation for 

different fluids mixed and Teschner [10] implemented a SPH algorithm to simulate 

rigid-fluid simulation. 

SPH is also used to simulation material that have a similar behaviour, as in [11] wich 

the technique is used to simulate sand. 

Most of those simulations are done offline but there are many applications research for 

real time simulations, which is the case of [12] which uses GPU programming to 

accelerate the simulation process. 

 

1.3 Objectives 
 

The goal of this project is to implement a SPH simulation in 2D based on the approach 

proposed by Schechter and Bridson, Ghost SPH for Animating Water [13]. 

These proposal describe how to sample ghost particles in the air and how to extrapolate 

the fluid characteristics to the ghost particles. Therewith, the free surface problem [6] 

can be solved and the simulation can have a greater liquid behaviour. 

Other aim is to render the simulation results, to achieve this purpose Metaballs (Blob) 

technique was used to give a proper rendering [14]. 
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 Method 
 

2.1 Basic SPH 
 

Smoothed Particle Hydrodynamics is a Lagrangian approach that treats the continuum 

as a finite number of particles. The fluid in the continuum form has position 𝑥, velocity 

𝑢, density 𝜌, pressure P, mass m and their movement are described by equation 1[6]. 

 

𝜌
𝑑�⃗� 

𝑑𝑡
=  ∇𝑃 + ∇ ∙ 𝜏 + 𝐹𝑒𝑥𝑡 (1) 

where  𝜏 is the viscosity, 𝐹𝑒𝑥𝑡 is the body force and t is the time. 

The SPH method discretize the fluid into a set of particles 𝑖 with the same attributes 

described above and with a radius of action ℎ, as illustrated in Figure 1 

 

 
Figure 1-Scheme showing a particle with its radios of action 

 

In the method any attributes A(x) can be described as (2) 

𝐴(𝑖) =  ∑𝑚𝑗
𝐴𝑗

𝜌𝑗
𝑊(𝑥𝑖 − 𝑥𝑗 , ℎ)

𝑗

 (2) 

where W is the kernel function and j are the neighbour particles. 

The kernel function W is a smooth, symmetric, normalized function with finite support, 

the same function can be used to many variables or a different kernel to an each variable 

From this equation the gradient and the laplacian can be calculated  as in (3) and (4) 

∇𝐴(𝑖) =  ∑𝑚𝑗
𝐴𝑗

𝜌𝑗
∇𝑊(𝑥𝑖 − 𝑥𝑗 , ℎ)

𝑗

 (3) 

 

∇2𝐴(𝑖) =  ∑𝑚𝑗
𝐴𝑗

𝜌𝑗
∇2𝑊(𝑥𝑖 − 𝑥𝑗 , ℎ)

𝑗

 (4) 

To get the neighbourhood from a single particle, a geometric comparison is used 

between the distances of two particles. If a couple of particles are within a distance less 

than the radius of action, those particles are neighbours of each other. 

The density of a particle can be calculate with respect to its neighbourhood, using 

equation (5) or using the convergence equation (6). 
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𝜌𝑖 =∑𝑚𝑗
𝑗

𝑤𝑖𝑗 (5) 

𝑑𝜌𝑖
𝑑𝑡

=∑𝑚𝑗(𝑣𝑖 − 𝑣𝑗)

𝑗

∇w𝑖𝑗  (6) 

There are many form of calculation the pressure exerted on a particles by the other 

particles. For high compressibility an ideal gas equation (7) can be used; if the 

simulation requires an incompressibility of the fluid the Poisson equation (8) can be 

used; or the Tait’s equation (9) can be used to enforce a very low density variation and 

leads to an efficient computation [15]. 

𝑃𝑖 = 𝑘𝑝(𝜌𝑖 − 𝜌0) (7) 

∇ ∙ (
1

𝜌
∇𝑃𝑛+1)

𝑖

=
1

∆𝑡
∇ ∙ 𝒖𝑖  (8) 

𝑃𝑖 = 𝐵((
𝜌𝑖
𝜌0
)𝛾  − 1) (9) 

Where 𝑘𝑝 and B are the pressure constants and 𝜌0 is the rest density of the fluid and 𝛾 

is a constant that usually has a value 7. 

The pressure force can be calculate using the discretization of the pressure gradient, 

which will result in (10), this formula is largely used because ensures a modular equality 

between two particles and conserves linear and angular momentum, creating a greater 

stability in the simulation [6].  

𝐹 = −𝑚𝑖∑𝑚𝑗
𝑗

(
𝑃𝑖
𝜌2

𝑖

+
𝑃𝑗

𝜌2
𝑗

)∇w𝑖𝑗 (10) 

To calculate the viscosity usually an artificial viscosity is used, as in Becker and 

Teschner research [15], that uses equation (11) which conserves linear and angular 

momentum. 

𝑑𝑣𝑖
𝑑𝑡

= {
−∑𝑚𝑗𝛱𝑖𝑗∇w𝑖𝑗               𝑣𝑖𝑗

𝑇𝑥𝑖𝑗 < 0

𝑗

0                                           𝑣𝑖𝑗
𝑇𝑥𝑖𝑗 < 0

 

To prevent the fluid to escape from its recipient, the Lennad-Jones method is used to 

create a repulsive force near boundary particles [6]. 

The particle velocities is calculated doing a simple integration using (11) and the new 

position is found using (12). 

𝑣𝑖 = 𝑣𝑖 + 𝑎𝑖∇𝑡 (11) 

𝑥𝑖 = 𝑥𝑖 + 𝑣𝑖𝛻𝑡 (12) 
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2.2 Ghost SPH 
 

These technique is a variation of the Basic SPH created by Schecter and Bridson [13], 

that dynamically create a number of ghost particles in the surface of the fluid with a 

blue noise distribution and extrapolate the technical features of the particles into the 

new ghost particles to use those particles in some of the calculations. The algorithm can 

be summarized as in the Figure 2 

 

 
Figure 2 – Flow diagram from the Ghost SPH 

 

In the Ghost SPH, uses a Cubic Spline kernel (13) , the density is calculated by using 

the convergence equation and it uses Tait’s equation (9), with a B = 2000, to solve the 

pressure equation. As in the Basic SPH, the pressure force is calculated using (6) and 

the velocities and position are calculated by a simple integration. 
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𝑤(𝑟 − 𝑟 , ℎ) = 𝑤(𝑅, ℎ) = 𝛼𝑑 ×

{
 
 

 
 
2

3
− 𝑅2 +

1

2
𝑅3   0 ≤ 𝑅 < 1

1

6
(2 − 𝑅)3         1 ≤ 𝑅 < 2

0                            𝑅 ≥ 2

 (13) 

 

 

2.2.1 XSPH Artificial Viscosity 
 

Different of the basic algorithm uses a simpler XSPH style of damping noise which is 

cheaper and easier to tune [13]. 

With that change, an intermediate velocity 𝑣∗ is created (14) and is used to calculate 

the velocity with the viscosity force (15) 

𝑣𝑖
∗ = 𝑣𝑖 + 𝑎𝑖∇𝑡 (14) 

𝑣𝑖 = 𝑣𝑖
∗+ ∈∑𝑚𝑏

(𝑣𝑖
∗ − 𝑣𝑗

∗)

𝜌�̅�
𝑤𝑖𝑗

𝑗

 (15) 

 

2.2.2 Ghost particles in the air 
 

To solve the free surface density problem, air particles are created in the beginning of 

each time step inside the kernel radius of the liquid, as can be seen in Figure 3 

 

 
Figure 3 – Ghost particles in the air. Fluids particles are shown in blue and ghost particles in grey. 

Figure taken from [13] 

Each new ghost particle has some characteristic: 

 

 Mass of a liquid particle 

 Velocity equals of the nearest liquid particle 

 Density equal to the rest density, with that will be under P = 0 creating a free 

surface boundary condition. 

 Contributes to the density calculation 

 No contribution to the pressure force 

 Explicitly excluded from the XSPH artificial viscosity 
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Those new particles in the simulation fill a enough layer around the surface, with that, 

the free surface density problem is solved, as it can be seen in the Figure 4 that shows 

the result from a zero-gravity hydrostatic test with Basic SPH vs Ghost SPH. The Ghost 

method keeps the fluid stable, keeping the shape and the volume as the original, 

meanwhile the Basic SPH does not conserves the shape and volume, creating a (free 

surface problem) [13]. 

 

 
(a)                                                                  (b) 

 
(c)                                                                     (d) 

Figure 4 – Hydrostatic Test.(a) Ghost SPH in 2D; (b) Basic SPH in 2D; (c) Ghost SPH in 3D (d) Basic 

SPH in 3D. Figure taken from [13] 

2.2.3 Sampling Algorithm 
 

To sample the new particles in the simulation a Poisson disk pattern is used, with that, 

is guaranteed that each new particle is at a minimum distance from other and to create 

this pattern the Brinson’s fast rejection-based approach is used [16]. 

These algorithm can be explained in a series of steps: 

Select an initial sample from the domain and insert on an “active list” (array of samples) 

While the list is not empty 

 Choose a random sample, x, from the active list 

 Generate up to k points inside a sphere with radius r and 2r around x 

 For each new point, check if it is within a distance r of all sample 

 If the new point is far enough from all samples 

  The new point is created and is add to the active list 

 If after k attempts no new point is created 

  Remove x from the active list 

In the SPH simulation, instead of using random fluid particles, every surface particles 

is inside the “active list” 
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The ghost particles algorithm above compared with a grid sampling gets better results 

because solve the anisotropic shell development problem [15], with some time the free 

surface gets with a shorter spacing between particles which can lead to instability in the 

simulation, as can be seen in Figure 5 . 

 

 
Figure 5 - Grid sampling the air vs Poisson dis. (a) Initial grid (b) 500 frames later, with an anisotropic 

shell developed. (c) Initial Poisson disk. (d) 500 frames later, essentially unchanged. Figure taken from 

[13] 

 

 

2.2.4 Free Surface Tracking 
 

To find the surface particles, the divergence of the positing (16) is applied. 

∇𝑥𝑖 = ∑
𝑚𝑗

𝜌𝑖
𝒓𝑖𝑗 ∙

𝑗

∇w𝑖𝑗 (16) 

If a particle is far from the free surface, the divergence has a value bigger than a 

threshold and much less than the threshold due to the lower number of neighbouring 

particles on your domain. Usually the value used is 2, but in the simulations made, a 

value 1.5 is used [17] 

 

2.3 Rendering 
 

Most of the techniques used to render a SPH result is based in surface reconstruction 

like Marching Cubes or Point Splatting [7]. Those techniques render the result 

reconstructing an iso-surface. 

In the project the technique used to render the results from the simulation was 

Metaballs, also named as Blobs [14]. The technique was chosen since can simply render 

2D points with a low cost, because different of other techniques, this does not generate 

a list of polygons, instead, it uses only the points of the simulation. 

 

2.3.1 Surface Splatting 
 

Splatting [21] is a simple and efficient algorithm for rendering point surfaces. The 

method uses z-buffer to resolve visibility, can be process the data set without any 

additional structures of acceleration but can be combined with some structures of 

acceleration to obtain a better result in the rendering. 
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In a naive approach of a projection point based method, each 3D point of the scene and 

give the color of the point to the pixel found in the projection, as can be seen in Figure 

6.a).That approach leads to holes in the rendered image if the surface do not have a high 

level of density points. 

To solve this problem, the spatting technique uses a footprint function that gives an 

intensity to the contribution of the point in the pixels, illustrated in Figure 6.b). 

 

 
(a)                                                          (b) 

Figure 6 – (a) Scheme of a naïve point based projection method; (b) Scheme of the 

splatting technique. Figure taken [21] 

 

If each pixel of the image can be denoted by a function 𝜃(𝑥, 𝑦), to calculate the color 

of each pixel, for each channel (R.G.B) we use (17) to find the color. 

𝜃(𝑥, 𝑦) =  ∑𝑐𝑖𝜌𝑖(𝑥, 𝑦)

𝑖

 (17) 

where i represents each point of the scene, 𝜌 is th footprint function and c are the 

color value of each point. 

 

2.3.2 Marching Cubes 
 

The marching cubes technique [22] uses a divide to conquer approach which the scene 

is processed from cells (voxels), equivalents to cubes. In each cell, the intersections 

between each of its 12 edges its isosurface  

The vertices values are compared with a value associated to the isosurface, each vertex 

is classified as “in” or “out” of the isosurface and with the vertices a set of triangles is 

made to approximate the isosurface, as can be seen in Figure 7 
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Figure 7 – Triangulated Cubes. Figure taken from [22] 

 

The main advantage of this technique lies in the fact that the processing of a cell is 

independent of each other, allowing their parallelization, however, as a drawback, it can 

a cause holes in the isosurface due to topological ambiguities between cases  

In general, many case processed by the marching cubes algorithm are empty, which 

will lead to unnecessary cost, to minimize this cost, spatial data structures are used to 

process only the active cells. 

 

2.3.3 Metaball 
 

Metaball is an iso-surface of a scalar fields, in that case, their surface has an influence 

in each point. If the influence is equal to a threshold values, a surface is found, otherwise 

it isn`t. With a system with more than one metaball their influence can be added to get 

the spheres influence together [14]. 

The strength of a blob can be positive or negative and it is relative to the core of the 

blob. If a blob have a positive strength, the blob creates a force of attraction in the other 

metaballs; if it is a negative value, the blob repels the other; if it has a 0 value, does not 

creates any force to the system. 

The threshold determines the strength of each blob and it has some characteristics [14]: 

 

1. Must have a positive value. 

2. If is a large number, the surface gets closer to the center of the blob. 
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3. If is a small number, the surface gets close to the surface of the blob.  

 

The influence of a metaball can be calculate by the density function [14], the influence 

can be calculated as (18) 

density =  𝑠𝑡𝑟𝑒𝑛𝑔ℎ𝑡 ∙ (1 − (
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑟𝑎𝑑𝑖𝑢𝑠
)
2

)2 (18) 

 

 Test Case 
 

To see the performance of the algorithm, three 2D dam break test case were made, all 

of them were based in the paper of Staroszczyk [18] which are illustrated in the Figure 

8 with the parameters bellow: 

 L = H = 0.6 

 3600 fluid particles 

 Initial Spacing between the particles = 0.01m 

 ∇𝑡 = 0.0005 𝑠 
 Mass = 0.225g 

 No initial velocity or acceleration 

 Boundary were created with the same parameters but with half of the initial 

spacing  

 

D

 
Figure 8 – Scheme of the Dam Break Test. Figure taken from [18] 

This test case is a classic test, this comes from the fact that the test can be compared to 

the experimental and analytical results, as can be seen in [23], [24] and [18]. 
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 Results 
 

Each test case was simulated were run on an Intel Core i7 with 8 GB of memory. To 

render the results, a PovRay [19] code were produced and send it to the software to 

render the simulation result as can be seen in Figure 9.c) and also a xml file were created 

to see the results in the software ParaView [20] that can be make a simple animation of 

the results just rendering the points like in Figure 9.a) 

To implement the method was used C++, the code was modularized so new formulas 

can be easily added or in case of new test case, this part of the code can be seen below 
 
densityCalculator22D(particles, h); //calculate the density 
  
pressureCalculator2D( particles, rho0); //calculate the pressure 
 
pressureForceCalculator2D( particles ); //add pressure and gravity forces 
 
velocityCalculator2D( particles, dt ); //calculate the velocity 
 
velocityXSPHCalculator2D( particles, dt, 0.05); //Calculate the viscosity 
 
positionCalculator2D( particles, dt ); //update the position 
 

If it’s necessary to include some new component as turbulence or same boundary 

conditions this can be add just including a new method and passing the particles as a 

parameter. For instance, if a turbulence calculater were added, the code should look like 

these: 

 
densityCalculator22D(particles, h); //calculate the density 
  
pressureCalculator2D( particles, rho0); //calculate the pressure 
 
pressureForceCalculator2D( particles ); //add pressure and gravity forces 
 
turbulenceCalculator(particles, attributes); 
 
velocityCalculator2D( particles, dt ); //calculate the velocity 
 
velocityXSPHCalculator2D( particles, dt, 0.05); //Calculate the viscosity 
 
positionCalculator2D( particles, dt ); //update the position 

 

 

 

The particles attributes can be easily accessed from the created struct, as can be seen 

below: 
struct Particle2D{ 
 
 Vector2D <double> position; 
 Vector2D <double> velocity; 
 Vector2D <double> intVelocity; 
 Vector2D <double> acceleration; 
  
 double mass; 
 double pressure; 
 double initialPressure; 
 double density; 
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 int type; // 0 for fluid, 1 for board, -1 for ghost 
 int freeSurface; //1 for true, 0 for false 
 vector<int> neighbors; 
  
 vector< double > kernel; 
 vector< Vector2D<double> > kernelGrad; 
 
 
}; 

 

 

4.1 Test 1 
 

The first test is a common dam break, which, after a while, the particles from the bottom 

of the column of water have greater velocity than the particles from the top, creating a 

runoff of the fluid, which can be seen in the Figure 9 

 
(a) 

 
(b) 

 

 
(c) 
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(d) 

Figure 9 – Teste Case 1: (a) Initial configuration; (b) Initial configuration after ghost particles creation 

(c) Result after 500 time steps using blobs to render; (d) Result after 2300 time steps using blobs to 

render 

Comparing the result from the Ghost SPH with the Basic SPH, can be seen that the 

result of the Ghost SPH have bigger stability. This fact can be seen in the Figure 10, the 

top left corner gets unstable using the Basic SPH, and some particles start to untie from 

the fluid, that problem was solved using the Ghost SPH. 

 

    
Figure 10 – Test case 1 result comparison: (a) Ghost SPH; (b) Basic SPH 

 

4.2 Test 2 
 

The second test is a dam break with the fluid begging in the middle of the recipient, is 

expected that each half of the fluid have the same flow, as illustrated in the Figure 11 

 

 
(a) 
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(b) 

 

 
(c) 

 

 
(d) 

Figure 11 – Test Case 2: (a) initial configuration; (b) initial configuration after ghost creating; (c) 

simulation after 400 tie steps using metaballs to render (d) simulation after 2000 time steps using blobs 

to render 
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4.3 Test 3 
 

The last test case is similar to the Test 1, but in the recipient there is obstacle that will 

change the flow of the fluid, as demonstrated bellow (Figure 12) 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 
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(d) 

Figure 12 – Test Case 3: (a) Initial configuration; (b) initial configuration after ghost creation; (c) 

Initial configuration using blob to render; (d) simulation result after the shock with the obstacle 

 

The results show a realistic look in the simulation but show some problems in the 

boundary condition since some particles are adhered to the wall though is just a small 

part of the sample which only create a small instability to the system.  
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 Conclusion and future work 
 

This project have the aim to implement a SPH based on the Ghost SPH [13], which 

generates ghost particles on the surface to solve the free surface problem and create a 

more realistic simulation. 

The test case show that the simulation creates smooth simulation with a real look, solves 

the free surface problem because completes the action radius with particles and have to 

be done offline since of the big time consumption with the creation of the new particles 

at each time step. 

In the future, is planned to improve the boundary condition, create simulations in 3D 

and to solve the problem with the time computation, GPU programing could be used, 

since the particles are geometric independent of each other, becoming easy to 

parallelize, e.g., each particle calculation is performed by one thread. 
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